Math, asked by ramaramachandra87, 1 month ago

please answer to my question
I will mark you as brailnliest​

Attachments:

Answers

Answered by Anonymous
40

Answer:

\begin{gathered}{\large{\underline{\underline{\maltese{\textsf{\textbf{\:Given :}}}}}}}\end{gathered}

  • ↠ Principle = ₹6400
  • ↠ Time = 2 years
  • ↠ Rate of Interest = 15½%

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\underline{\underline{\maltese{\textsf{\textbf{\:To Find  :}}}}}}}\end{gathered}

  • ↠ Compound Interest

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\underline{\underline{\maltese{\textsf{\textbf{\:Concept :}}}}}}}\end{gathered}

⊙ Here we have given that the Principal is ₹6400, Time is 2 years and rate is 11/2 p.c.p.a. As we know that to find the compound interest we need Amount. So firstly we will find out the amount.

⊙ After finding the amount we will find out the Compound Interest by substituting the values in the formula.

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\underline{\underline{\maltese{\textsf{\textbf{\:Using Formulae :}}}}}}}\end{gathered}

\quad\bigstar{\underline{\boxed{\sf{A ={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}

\quad\bigstar{\underline{\boxed{\sf{C.I= A - P }}}}

\purple\bigstar Where

  • ★ P = Principle
  • ★ R = Rate of Interest
  • ★ T = Time
  • ★ A = Amount
  • ★ C.I = Compound Interest

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\underline{\underline{\maltese{\textsf{\textbf{\:Solution :}}}}}}}\end{gathered}

\purple\bigstar Here :-

  • Principle = ₹6400
  • Time = 2 years
  • Rate of Interest = 11/2%

\begin{gathered}\end{gathered}

\purple\bigstar Firstly, Finding the Amount :-

\quad{\small{\dashrightarrow{\tt{A ={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}

  • Substituting the values

\quad{\small{\dashrightarrow{\tt{A ={6400{\bigg(1 + \dfrac{11}{2 \times 100}{\bigg)}^{2}}}}}}}

\quad{\small{\dashrightarrow{\tt{A ={6400{\bigg(1 + \dfrac{11}{200}{\bigg)}^{2}}}}}}}

\quad{\small{\dashrightarrow{\tt{A ={6400{\bigg(\dfrac{(1 \times200) + (11 \times 1)}{200}{\bigg)}^{2}}}}}}}

\quad{\small{\dashrightarrow{\tt{A ={6400{\bigg(\dfrac{200 + 11}{200}{\bigg)}^{2}}}}}}}

\quad{\small{\dashrightarrow{\tt{A ={6400{\bigg(\dfrac{211}{200}{\bigg)}^{2}}}}}}}

\quad{\small{\dashrightarrow{\tt{A ={6400{\bigg(\dfrac{211}{200} \times \dfrac{211}{200}{\bigg)}}}}}}}

\quad{\small{\dashrightarrow{\tt{A ={6400{\bigg(\dfrac{44521}{40000}{\bigg)}}}}}}}

\quad{\small{\dashrightarrow{\tt{A ={6400 \times \dfrac{44521}{40000}}}}}}

\quad{\small{\dashrightarrow{\tt{A ={\dfrac{6400 \times 44521}{40000}}}}}}

\quad{\small{\dashrightarrow{\tt{A ={\dfrac{284934400}{40000}}}}}}

\quad{\small{\dashrightarrow{\tt{A ={ \cancel\dfrac{284934400}{40000}}}}}}

\quad{\small{\dashrightarrow{\tt{A ={7123.36}}}}}

\quad\bigstar{\underline{\boxed{\pmb{\sf{\red{ Amount={7123.36}}}}}}}

The Amount is ₹7123.36.

\begin{gathered}\end{gathered}

\purple\bigstar Now, Calculating the Compound Interest :-

\quad{\dashrightarrow{\tt{C.I= A - P }}}

  • Substuting the values

\quad{\dashrightarrow{\tt{C.I= 7123.36- 6400 }}}

\quad{\dashrightarrow{\tt{C.I= 723.36}}}

\quad\bigstar{\underline{\boxed{\pmb{\sf{\red{Compound \: Interest = 723.36}}}}}}

The Compound Interest is ₹723.36.

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\underline{\underline{\maltese{\textsf{\textbf{\:Learn More :}}}}}}}\end{gathered}

\quad{\longrightarrow{\sf{A ={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}

\quad{\longrightarrow{\sf{Amount = Principle + Interest}}}

\quad{\longrightarrow{\sf{ P=Amount - Interest }}}

\quad{\longrightarrow{\sf{ S.I = \dfrac{P \times R \times T}{100}}}}

\quad{\longrightarrow{\sf{P = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}}}}

\quad{\longrightarrow{\sf{P = \dfrac{Interest \times 100 }{Time \times Rate}}}}

\quad{\longrightarrow{\sf{Rate = \dfrac{Simple \: Interest \times 100}{Principle \times Time}}}}

Similar questions