please answer Topic:- Locus
no spam
Answers
TOPIC :-
Locus
GIVEN :-
- (p,q) (acosθ , asinθ) , (bcosθ, asinθ) are vertices of triangle
TO FIND :-
- Locus of Centroid of triangle
SOLUTION:-
Let locus of a Centroid triangle be (h,k)
ATQ Centroid can be
= (h,k)
Equating to (h,k)
p+acosθ + bcosθ = 3h
acosθ + bcosθ = 3h-p ------- eq 1
q + bsinθ + asinθ = 3k
bsinθ + asinθ = 3k - q -------- eq 2
Adding equation 1 , 2 and Squaring
(acosθ + bcosθ )²+ (bsinθ + asinθ)² = (3h-p)² (3k-q)²
In RHS Replacing h, k with x,y
(acosθ + bcosθ )²+ (bsinθ + asinθ)² = (3x-p)² (3y-q)²
Expand in LHS It is in form of (a+b)² = a²+ 2ab + b²
(acosθ + bcosθ )²+ (bsinθ + asinθ)² = (3x-p)² (3y-q)²
a²cos²θ + b²cos²θ + 2abcosθcosθ + b²sin²θ + a²sin²θ + 2absinθsinθ = (3x-p)² (3y-q)²
a²cos²θ + b²cos²θ + 2abcos²θ + b²sin²θ + a²sin²θ + 2absin²θ = (3x-p)²+ (3y-q)²
Regrouping the terms
a²cos²θ + a²sin²θ + b²cos²θ + b²sin²θ + 2absin²θ + 2ab cos²θ= (3x-p)² +(3y-q)²
Taking common a², b² , 2ab
a² (sin²θ + cos²θ) + b²(sin²θ + cos²θ) +2ab(sin²θ+cos²θ) =(3x-p)² +(3y-q)²
We know Trigonmetry Identity :- sin²θ + cos²θ = 1
a² + b² + 2ab = (3x-p)² +(3y-q)²
We know that (a + b)² = a²+ 2ab + b²
(a + b)² = (3x-p)² +(3y-q)²
Option -A
Answer:
Step-by-step explanation
TOPIC :-
Locus
GIVEN :-
(p,q) (acosθ , asinθ) , (bcosθ, asinθ) are vertices of triangle
TO FIND :-
Locus of Centroid of triangle
SOLUTION:-
Let locus of a Centroid triangle be (h,k)
ATQ Centroid can be
= (h,k)
Equating to (h,k)
p+acosθ + bcosθ = 3h
acosθ + bcosθ = 3h-p ------- eq 1
q + bsinθ + asinθ = 3k
bsinθ + asinθ = 3k - q -------- eq 2
Adding equation 1 , 2 and Squaring
(acosθ + bcosθ )²+ (bsinθ + asinθ)² = (3h-p)² (3k-q)²
In RHS Replacing h, k with x,y
(acosθ + bcosθ )²+ (bsinθ + asinθ)² = (3x-p)² (3y-q)²
Expand in LHS It is in form of (a+b)² = a²+ 2ab + b²
(acosθ + bcosθ )²+ (bsinθ + asinθ)² = (3x-p)² (3y-q)²
a²cos²θ + b²cos²θ + 2abcosθcosθ + b²sin²θ + a²sin²θ + 2absinθsinθ = (3x-p)² (3y-q)²
a²cos²θ + b²cos²θ + 2abcos²θ + b²sin²θ + a²sin²θ + 2absin²θ = (3x-p)²+ (3y-q)²
Regrouping the terms
a²cos²θ + a²sin²θ + b²cos²θ + b²sin²θ + 2absin²θ + 2ab cos²θ= (3x-p)² +(3y-q)²
Taking common a², b² , 2ab
a² (sin²θ + cos²θ) + b²(sin²θ + cos²θ) +2ab(sin²θ+cos²θ) =(3x-p)² +(3y-q)²
We know Trigonmetry Identity :- sin²θ + cos²θ = 1
a² + b² + 2ab = (3x-p)² +(3y-q)²
We know that (a + b)² = a²+ 2ab + b²
(a + b)² = (3x-p)² +(3y-q)²
Option -A