please answer urgent
Answers
Answer:
Given:
- A × 4 = E....(1)
- B ÷ 4 = E.....(2)
- C + 4 = E......(3)
- D - 4 = E.....(4)
- A + B + C + D = 100
To Find:
- E = ?
Solution:
- From (1)
A = E/4 ....... (5)
- From (2)
B = 4E ....... (6)
- From (3)
C = E - 4 ........(7)
- From (4)
D = E + 4 .......(8)
- Using the results (5),(6),(7) and (8)
A + B + C + D = 100
=> E/4 + 4E + (E - 4) + (E + 4) = 100
=> E/4 + 4E + E - 4 + E + 4 = 100
=> E/4 + 4E + E + E = 100
=> E/4 + 4E + 2E = 100
=> E/4 + 6E = 100
=> (E + 24E)/4 = 100
=> E + 24E = 100 × 4
=> E + 24E = 400
=> 25E = 400
=> E = 400/25
=> E = 16
Question:
- A × 4 = E
- B ÷ 4 = E
- C + 4 = E
- D - 4 = E
- A + B + C + D = 100
What is the value of E ?
Answer:
Step-by-step explanation:
We have given equations,
A × 4 = E .......(i)
B ÷ 4 = E ........(ii)
C + 4 = E ........(iii)
D - 4 = E ..........(iv)
A + B + C +D = 100 ........(v)
From equation (i) and (ii), we have,
=> 4A/(B/4) = E/E
=> 16A/B = 1
=> B = 16 A .........(vi)
Adding eqn (iii) and (iv), we get,
=> C + D = 2E ........(vii)
Now, substituting the values from eqn (vi) and (vii) in eqn (v), we get,
=> A + 16A + 2E = 100 ........(viii)
But, from eqn (i), we have,
=> E = 4A
Substituting this value in eqn (viii), we get,
=> A + 16 A + 2(4A) = 100
=> 17A + 8A = 100
=> 25A = 100
=> A = 100/25
=> A = 4
Now, substituting this value in eqn (i), we get,
=> A × 4 = E
=> 4 × 4 = E
=> E = 16
Hence, the value of E = 16