Math, asked by WadeSmith, 1 month ago

please answer
what is p equal to?​

Attachments:

Answers

Answered by MysticSohamS
1

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

to \: find =  \\ value \: of \: p \\  \\ so \: here \\  \frac{a + p +  \sqrt{a {}^{2} -p {}^{2}   }  }{a + p -  \sqrt{a {}^{2} - p {}^{2}  } }  =  \frac{b}{p}  \\  \\ applying \: componendo \: dividendo \\ we \: get \\  \\  =  \frac{a + p +  \sqrt{a {}^{2}  - p {}^{2} }  \:  +  \: a + p -  \sqrt{a {}^{2}  - p {}^{2} } }{a +p +  \sqrt{a {}^{2}  - p {}^{2} } \:     -   \: (a + p -  \sqrt{a {}^{2}  - p {}^{2} } \: ) }  =  \frac{b + p}{b - p}  \\  \\  =  \frac{a + p + a + p}{a + p +  \sqrt{a {}^{2}  - p {}^{2} }   - a - p +  \sqrt{a {}^{2}  - p {}^{2} } }  =  \frac{b + p}{b - p}  \\  \\  =  \frac{2a + 2p}{ \sqrt{a {}^{2}  - p {}^{2} } \:  +  \:  \sqrt{a {}^{2}  - p {}^{2} }  }  =  \frac{b + p}{b - p}  \\  \\  =  \frac{2(a + p)}{2. \sqrt{a {}^{2} - p {}^{2}  } }  =  \frac{b + p}{b - p}  \\  \\  =  \frac{a + p}{ \sqrt{a {}^{2}  - p {}^{2} } }  =  \frac{b + p}{b - p}  \\  \\ squaring \: both \: sides \\ we \: get \\  \\  =   \frac{(a + p) {}^{2} }{( \sqrt{a {}^{2} - p {}^{2}  } \:  )}  =  \frac{(b + p) {}^{2} }{(b - p) {}^{2} }  \\  \\  =  \frac{(a + p)(a + p)}{a {}^{2} - p {}^{2}  }  \:  =  \frac{b {}^{2}  + p {}^{2}  + 2bp}{b {}^{2}  + p {}^{2} - 2bp }  \\  \\  =  \frac{(a + p)(a + p)}{(a + p)(a - p)}  =  \frac{b {}^{2} + p {}^{2}   + 2bp }{b {}^{2}  + p {}^{2} - 2bp }  \\  \\  =  \frac{a + p}{a - p}  =  \frac{b {}^{2}  + p {}^{2}  + 2bp}{b {}^{2}  + p {}^{2}  - 2bp}

again \: applying \: compenendo \: dividendo \\ we \: get \\  \\  =  \frac{a + p + a - p}{a + p - (a - p)}  =  \frac{b {}^{2} + p {}^{2}  + bp + b {}^{2}  + p {}^{2}   - 2bp}{b {}^{2} + p {}^{2}   + 2bp - (b {}^{2} + p {}^{2}  - 2bp) }  \\  \\  =  \frac{a + a}{a + p - a + p}  =  \frac{b {}^{2} + p {}^{2}  + b {}^{2} + p {}^{2}   }{b {}^{2}  + p {}^{2}  + 2bp - b {}^{2} - p {}^{2} + 2bp  }  \\  \\  =   \frac{2a}{2p}  =  \frac{2b {}^{2} + 2p {}^{2}  }{2bp + 2bp}  \\  \\  =  \frac{a}{p}  =  \frac{2(b {}^{2} + p {}^{2}  )}{4bp}  \\  \\  = a =  \frac{b {}^{2} + p {}^{2}  }{2b}  \\  \\  = 2ab = b {}^{2}  + p {}^{2}  \\  = p {}^{2}  = 2ab - b {}^{2}  \\  = b(2a - b) \\  \\ taking \: square \: root \: on \: both \: sides

we \: get \\ p = ± \:  \sqrt{b(2a - b)}

Similar questions