Math, asked by avnishS4T17, 9 months ago

please answer.
will mark you brainliest​

Attachments:

Answers

Answered by VIVEKPARIDA
5

Answer:

Exterior Angle of a triangle:

If a side of a triangle is produced then the exterior angle so formed is equal to the sum of the two interior opposite angles.

______________________

Solution:

Given,

Bisectors of ∠PQR & ∠PRS meet at point T.

To prove,

∠QTR = 1/2∠QPR.

Proof,

∠TRS = ∠TQR +∠QTR

(Exterior angle of a triangle equals to the sum of the two interior angles.)

⇒∠QTR=∠TRS–∠TQR — (i)

∠SRP = ∠QPR + ∠PQR

⇒ 2∠TRS = ∠QPR + 2∠TQR

[ TR is a bisector of ∠SRP & QT is a bisector of ∠PQR]

⇒∠QPR= 2∠TRS – 2∠TQR

⇒∠QPR= 2(∠TRS – ∠TQR)

⇒ 1/2∠QPR =  ∠TRS – ∠TQR — (ii)

Equating (i) and (ii)

∠QTR= 1/2∠QPR

Hence proved.

=========================================================

Answered by Anonymous
6

GIVEN:-

  • The side of QR of ∆PQR is Produced to a point S.

  • if the Bisector of \rm{\angle{PQR}\:and\:\angle{PRS}} meet at the Point T.

TO PROVE

  • \rm{\angle{QTR}=\dfrac{1}{2}\angle{QPR}}.

PROPERTY USED:-

  • Exterior angle Property i.e the Sum of two Opposite interior angle is equal to the external angle.

Now,

In ∆QTR

\implies\rm{\angle{TQR}+\angle{QTR}=\angle{TRS}}(Exterior angle Property)

\implies\rm{\angle{QTR}=\angle{TRS}-\angle{TQR}}.......1

Now,

In ∆PQR

\implies\rm{\angle{PQR}+\angle{QPR}=\angle{PRS}}(Exterior angle Property).

[TR is the Bisector of <PRS and TQ is the Bisector of <PQR.]

  • \rm{\dfrac{1}{2}\angle{PQR}=\angle{TQR}=\angle{PQR}=\angle{2TQR}}.......2

  • Similarly, \rm{\angle{PRS}=\angle{2TRS}}..........3

So, From 2 and 3

\implies\rm{\angle{2TQR}+\angle{QPR}=\angle{2TRS}}

\implies\rm{\angle{QPR}=2(\angle{TRS}-\angle{TQR})}

Substituting the value of eq1

\implies\rm{\angle{QPR}=2(\angle{QTR})}

or,

\implies\rm{\dfrac{1}{2}\angle{QPR}=\angle{QTR}}

Similar questions