Please answer with clear and proper solution.
★ Q - 30 PLEASE ★
THANK U IN ADVANCE.☺
Attachments:
Answers
Answered by
8
Hola there,
LHS
=>
=>
=>
=>
=>
RHS
=>
=>
=>
=>
Therefore,
LHS = RHS
Hence Proved.
Hope this helps...:)
LHS
=>
=>
=>
=>
=>
RHS
=>
=>
=>
=>
Therefore,
LHS = RHS
Hence Proved.
Hope this helps...:)
HridayAg0102:
thanks to both of u ☺
Answered by
15
(tanα + cosecβ)² - (cotβ - secα)² = 2tanαcotβ(cosecα+secβ)
Opening The Brackets
tan²α + cosec²β + 2tanαcosecβ - (cot²β + sec²α -2cotαsecβ) = RHS
tan²α + cosec²β + 2 tanαcosecβ - cot²β - sec²α + 2cotαsecβ = RHS
tan²α - sec²α + cosec²β - cot²β + 2 tanαcosecβ + 2cotαsecβ = RHS
secα²- 1 - secα² + cot²β + 1 - cot²β + 2 tanαcosecβ + 2cotαsecβ = RHS
On Solving We Will Get...
2tanαcosecβ + 2cotαsecβ = RHS
2 sinα/cosα (1 / sinβ) + 2 cosβ/sinβ (1 /cosα) = RHS
2(sinα + cosβ)/cosα sinβ = 2 tanα cotβ (cosecα + secβ)
2(sinα + cosβ)/cosα sinβ = 2sinα/cosβ x cosβ/sinβ (1/sinα + 1/cosβ)
So, 2(sinα + cosβ)/cosα sinβ = 2(sinα + cosβ)/cosα sinβ
RHS = LHS ......... HENCE PROVED
Opening The Brackets
tan²α + cosec²β + 2tanαcosecβ - (cot²β + sec²α -2cotαsecβ) = RHS
tan²α + cosec²β + 2 tanαcosecβ - cot²β - sec²α + 2cotαsecβ = RHS
tan²α - sec²α + cosec²β - cot²β + 2 tanαcosecβ + 2cotαsecβ = RHS
secα²- 1 - secα² + cot²β + 1 - cot²β + 2 tanαcosecβ + 2cotαsecβ = RHS
On Solving We Will Get...
2tanαcosecβ + 2cotαsecβ = RHS
2 sinα/cosα (1 / sinβ) + 2 cosβ/sinβ (1 /cosα) = RHS
2(sinα + cosβ)/cosα sinβ = 2 tanα cotβ (cosecα + secβ)
2(sinα + cosβ)/cosα sinβ = 2sinα/cosβ x cosβ/sinβ (1/sinα + 1/cosβ)
So, 2(sinα + cosβ)/cosα sinβ = 2(sinα + cosβ)/cosα sinβ
RHS = LHS ......... HENCE PROVED
Similar questions