Math, asked by shreyasaini089, 12 hours ago

please answer with full solution​

Attachments:

Answers

Answered by veerapushkar
1

Answer:

7

Step-by-step explanation:

x =  \frac{2}{3 +  \sqrt{7} }  \\ x - 3 =  \frac{2}{3 +  \sqrt{7} }  - 3 \\  {(x - 3)}^{2}  =  { (\frac{2}{3 +  \sqrt{7}  }  - 3)}^{2}  \\  =  { (\frac{2}{3 +  \sqrt{7} } )}^{2}  +  {3}^{2}  - 2 \times  \frac{2}{3 +  \sqrt{7} }  \times 3 \: as \:  {(a  -  b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab \\  =  \frac{4}{ {(3 +  \sqrt{7} )}^{2} }  + 9 -  \frac{12}{3 +  \sqrt{7} }  \\  =  \frac{4}{9 + 7 + 6 \sqrt{7} }  + 9 -  \frac{12}{3 +  \sqrt{7} }  \\  = 9 +  \frac{4}{16 + 6 \sqrt{7} }   -  \frac{12}{3 +  \sqrt{7} }  \\  = 9 +  \frac{(12 + 4 \sqrt{7})  - (192 + 72 \sqrt{7} )}{(16 + 6 \sqrt{7}) \times (3 +  \sqrt{7}  )}  \\  = 9  -   \frac{180 + 68 \sqrt{7} }{90 + 34 \sqrt{7} }  \\  = 9 - 2 \:  (as \: \frac{180 + 68 \sqrt{7} }{90 + 34 \sqrt{7} } \:  = 2)\\ = 7

Similar questions