Math, asked by wwwhritikkhatwani, 10 months ago

please answer with method ​

Attachments:

Answers

Answered by lifelovesnaman2324
1

Answer:

Step-by-step explanation: the value of cos for 1/2 is 60°

The value for tan 1/√3 is 30°

So( alpha +beta ) is equal to 90°

And sin90° = 1

Answered by Anonymous
0

Answer : Option (D) is correct✔️

Solution :

Given that :

 \cos \alpha  =  \frac{1}{2}  \: and \\  \\  \tan\beta  =  \frac{1}{ \sqrt{3} }  =  \frac{p}{b}  \\  \\  =  >  {h}^{2}  =  {p}^{2}  +  {b}^{2}  \\  \\  =  >  {h}^{2}  = 1 + 3 = 4 \\  \\  = h = 2 \\  \\   \sin\beta  =  \frac{p}{h}  =  \frac{1}{2} \:  and \:  \cos\beta  =  \frac{b}{h}  =  \frac{ \sqrt{3} }{2}

And

 \cos\alpha   =  \frac{1}{2}  =  \frac{b}{h}  \\  \\  =  >  {h}^{2}  =  {p}^{2}  +  {b}^{2}  \\  \\  =  >  {2}^{2}  =  {p}^{2}  + 1 \\  \\  =  >  {p}^{2}  = 4 - 1 = 3 \\  \\  =  > p =  \sqrt{3}  \\  \\  =  >  \sin \alpha  =  \frac{p}{h}  =  \frac{ \sqrt{3} }{2}

Now,

 \sin( \alpha  +  \beta )  =  \sin\alpha  \cos\beta  +  \cos \alpha  \sin\beta  \\  \\  =  >  \sin( \alpha  +  \beta ) =  \frac{ \sqrt{3} }{2}   \times \frac{ \sqrt{3} }{2}  +  \frac{1}{2}  \times  \frac{1}{2}   \\  \\  =  >  \sin( \alpha  +  \beta )  =  \frac{3}{4}  +  \frac{1}{4} \\  \\ =  >  sin( \alpha  +  \beta )  = 1

I hope it will be helpful for you ✌️✌️

Mark it as brainliest and....

Fóllòw ☺️☺️

Similar questions
Math, 10 months ago