Math, asked by harshbansal3362, 9 months ago

Please answer with proper explanation

Attachments:

Answers

Answered by saounksh
0

Answer:

1

Step-by-step explanation:

I will be using a,b,c,d instead of α1,α2,α3α4 as it is difficult to type.

 \frac{ \cos(a - b) }{ \cos(a + b) } +  \frac{ \cos(c - d) }{ \cos(c + d) } \:  = 0

 \frac{\cos(a - b)\cos(c + d)+  \cos(c - d)\cos(a + b) }{ \cos(a + b)  \cos(c + d) }= 0

 \cos(a - b)  \cos(c + d)  +  \cos(a + b)  \cos(c - d) = 0

( \cos(a) \cos(b)  +  \sin(a)  \sin(b))( \cos(c ) \cos(d)  -  \sin(c)  \sin(d)) + ( \cos(a ) \cos(b)  -  \sin(a)  \sin(b)).( \cos(c ) \cos(d)  +  \sin(c)  \sin(d)). = 0

 \cos(a)  \cos(b)  \cos(c)  \cos(d)   -\cos(a)   \cos(b)  \sin(c)  \sin(d)  +\sin(a)   \sin(b)  \cos(c)  \cos(d)  -\sin(a)  \sin(b)  \sin(c)  \sin(d) + \cos(a)  \cos(b)  \cos(c)  \cos(d)   +\cos(a)   \cos(b)  \sin(c)  \sin(d)   -\sin(a)   \sin(b)  \cos(c)  \cos(d)  -\sin(a)  \sin(b)  \sin(c)  \sin(d) = 0

2 \cos(a)  \cos(b)  \cos(c)  \cos(d)  - 2 \sin(a)  \sin(b)  \sin(c)  \sin(d)  = 0

 \sin(a)  \sin(b)  \sin(c)  \sin(d)  =  \cos(a)  \cos(b)  \cos(c)  \cos(d)

 \frac{ \sin(a) \sin(b) \sin(c)  \sin(d) }{ \cos(a)  \cos(b) \cos(c)   \cos(d) }  = 1

 \tan(a)  \tan(b)  \tan(c)  \tan(d)  = 1

Similar questions