Math, asked by eratzinfantry, 1 month ago

please answer with proper proof!​

Attachments:

Answers

Answered by shadowsabers03
7

Consider the inequality,

\small\text{$\displaystyle\longrightarrow\dfrac{(x-12)(x-4)}{(x^2-16)}>0$}

\small\text{$\displaystyle\longrightarrow\dfrac{(x-12)(x-4)}{(x+4)(x-4)}>0$}

Performing wavy curve method,

\setlength{\unitlength}{1mm}\begin{picture}(0,0)\thicklines\put(10,0){\line(1,0){60}}\multiput(20,0)(20,0){3}{\circle{2}}\qbezier(60,0)(65,5)(70,10)\multiput(20,0)(20,0){2}{\qbezier(0,0)(10,-10)(20,0)}\qbezier(10,10)(15,5)(20,0)\put(15,-5){$-4$}\put(39,-5){$4$}\put(60,-5){$12$}\end{picture}

Therefore,

\small\text{$\displaystyle\longrightarrow x\in(-\infty,\ -4)\cup(12,\ \infty)\quad\quad\dots(1)$}

Consider the inequality,

\small\text{$\displaystyle\longrightarrow\dfrac{(x^2+16)(x+4)}{(x-4)(x+5)}\leq0$}

Here x^2+16>0\ \ \forall x\in\mathbb{R}.

\small\text{$\displaystyle\Longrightarrow\dfrac{x+4}{(x-4)(x+5)}\leq0$}

Performing wavy curve method,

\setlength{\unitlength}{1mm}\begin{picture}(0,0)\thicklines\put(10,0){\line(1,0){60}}\multiput(20,0)(40,0){2}{\circle{2}}\put(40,0){\circle*{2}}\multiput(0,0)(50,10){2}{\qbezier(10,-10)(15,-5)(20,0)}\qbezier(20,0)(30,10)(40,0)\qbezier(40,0)(50,-10)(60,0)\put(15,-5){$-5$}\put(37,-5){$-4$}\put(60,-5){$4$}\end{picture}

Therefore,

\small\text{$\displaystyle\longrightarrow x\in(-\infty,\ -5)\cup[-4,\ 4)\quad\quad\dots(2)$}

Hence the answer is given by the union of (1) and (2).

\small\text{$\displaystyle\longrightarrow x\in\big[(-\infty,\ -4)\cup(12,\ \infty)\big]\cup\big[(-\infty,\ -5)\cup[-4,\ 4)\big]$}

\small\text{$\displaystyle\longrightarrow\underline{\underline{x\in(-\infty,\ 4)\cup(12,\ \infty)}}$}

Similar questions