Math, asked by SuparnaSenthilvelan, 3 months ago

Please answer with proper steps

Attachments:

Answers

Answered by khashrul
1

Answer:

n=\frac{31}{32}  Option D) is the correct answer.

Step-by-step explanation:

Given that, \sqrt{3\sqrt{3\sqrt{3\sqrt{3\sqrt{3} } } } } = 3^{n}  .  .  .  .  .  .  .  .  . (i)

=>3\sqrt{3\sqrt{3\sqrt{3\sqrt{3} } } }  = 3^{2n}  [squaring both sides]

=>\sqrt{3\sqrt{3\sqrt{3\sqrt{3} } } }  = 3^{2n-1}  [∵ \frac{a^m}{a^n} = a^{m-n}]

=>3\sqrt{3\sqrt{3\sqrt{3} } }   = 3^{2(2n-1)}  [squaring both sides]

=>\sqrt{3\sqrt{3\sqrt{3} } }   = 3^{2(2n-1)-1} = 3^{4n-3}

=>3\sqrt{3\sqrt{3} }  = 3^{2(4n-3)}  [squaring both sides]

=>\sqrt{3\sqrt{3} }  = 3^{2(4n-3)-1} = 3^{8n-7}

=>3\sqrt{3} = 3^{2(8n-7)}   [squaring both sides]

=>\sqrt{3} = 3^{2(8n-7)-1} = 3^{16n-15}

=>3 = 3^{2(16n-15)}  [squaring both sides]

∴ 32n - 30 = 1

=> 32n = 31

n=\frac{31}{32}  Option D) is the correct answer.

Similar questions