please answer with proper steps and valid process
Answers
IN the given figure,
OBC and OKH are straight lines, AH = AK, b = 50° , c = 110° ---(Given)
Here, in triangle ACB,
/_ACB + /_CBA + /_BAC = 180°
--(sum of angles of triangle)
/_ACB = b = 50° + /_CBA = c = 110° + /_BAC = 180°
/_BAC = 180° - 160°
/_BAC = 20°
In triangle AHK, AH=AK therefore it is an isosceles triangle,
∴ /_AHK = /_AKH = x
/_AHK + /_AKH + /_KAH = 180°
x + x + /_KAH = 180°
/_KAH = /_BAC = 20°
∴ x + x + 20° = 180°
∴ 2x = 180° - 20°
x = (160°)/2
x = 80°= /_AHK = /_AKH
Now,
/_ABO = /_BAC + /_ACB
--------(Remote interior angles)
= 20° + 50°
/_ABO = 70°
/_AKH congruent to /_BKO = 80°
---(vertically opposite angles)
So, in triangle KOB,
/_KBO + /_BOK +/_BKO = 180°
/_KBO = /_ABO
∴ 70° + /_BOK + 80° = 180°
∴ /_BOK + 150° = 180°
/_BOK = 180° - 150°
/_BOK = d = 30°
Hence the value of d is option (c) 30°
Answer:
nice profile
please mark me as BRAINLIEST