Math, asked by NehaSinghania, 2 days ago

Please answer with solution and please don't scam​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Given \:Question - }}

 \sf \: Evaluate \: \displaystyle\lim_{x \to 0}\sf \dfrac{ \sqrt[5]{x + 32}  - 2}{x}

\large\underline{\sf{Solution-}}

Given function is

 \rm :\longmapsto\: \displaystyle\lim_{x \to 0}\sf \dfrac{ \sqrt[5]{x + 32}  - 2}{x}

If we substitute x = 0, directly we get

\rm \:  =  \:  \:  \ \dfrac{ \sqrt[5]{0 + 32}  - 2}{0}

\rm \:  =  \:  \:  \ \dfrac{ \sqrt[5]{ 32}  - 2}{0}

\rm \:  =  \:  \:  \ \dfrac{ 2  - 2}{0}

\rm \:  =  \:  \:  \ \dfrac{0}{0}  \: which \: is \: meaningless

So, To evaluate this limit,

 \rm :\longmapsto\: \displaystyle\lim_{x \to 0}\sf \dfrac{ \sqrt[5]{x + 32}  - 2}{x}

we use method of Substitution.

\red{\rm :\longmapsto\:Put \:  \sqrt[5]{x + 32}  = y}

\red{\rm :\longmapsto\:x + 32 =  {y}^{5} }

\red{\rm :\longmapsto\:x  =  {y}^{5} - 32 }

\red{\rm :\longmapsto\:When \: x \to \: 0 \:  \: so \:  \: y \:  \to \: 2}

So, the given

 \rm :\longmapsto\: \displaystyle\lim_{x \to 0}\sf \dfrac{ \sqrt[5]{x + 32}  - 2}{x}

reduces to

\rm \:  =  \:  \: \displaystyle\lim_{y \to 2}\sf   \:  \: \frac{y - 2}{ {y}^{5}  - 32}

can be rewritten as

\rm \:  =  \:  \: \displaystyle\lim_{y \to 2}\sf   \:  \: \frac{y - 2}{ {y}^{5}  -  {2}^{5} }

can be again rewritten as

\rm \:  =  \:  \: \displaystyle\lim_{y \to 2}\sf   \:  \: \dfrac{1}{\dfrac{ {y}^{5}  -  {2}^{5} }{y - 2} }

We know that,

\boxed{ \bf{ \: \displaystyle\lim_{x \to a}\sf  \:  \:  \frac{ {x}^{n}  -  {a}^{n} }{x - a}  \: = \:   {na}^{n - 1}}}

So, using this, we get

\rm \:  =  \:  \: \dfrac{1}{5 {(2)}^{5 - 1} }

\rm \:  =  \:  \: \dfrac{1}{5 {(2)}^{4} }

\rm \:  =  \:  \: \dfrac{1}{5 \times 16}

\rm \:  =  \:  \: \dfrac{1}{80}

Hence,

 \purple{\boxed{ \bf{ \: \: \displaystyle\lim_{x \to 0}\bf \dfrac{ \sqrt[5]{x + 32}  - 2}{x} =  \frac{1}{80} }}}

Additional Information :-

\boxed{ \bf{ \: \displaystyle\lim_{x \to 0}\rm \:  \frac{sinx}{x} = 1}}

\boxed{ \bf{ \: \displaystyle\lim_{x \to 0}\rm \:  \frac{tanx}{x} = 1}}

\boxed{ \bf{ \: \displaystyle\lim_{x \to 0}\rm \:  \frac{log(1 + x)}{x} = 1}}

\boxed{ \bf{ \: \displaystyle\lim_{x \to 0}\rm \:  \frac{ {e}^{x} - 1 }{x} = 1}}

\boxed{ \bf{ \: \displaystyle\lim_{x \to 0}\rm \:  \frac{ {a}^{x} - 1 }{x} = loga}}

Similar questions