Math, asked by ganesh200668, 11 months ago

please answer.

x=√2+6.Find x+1/x.


Answers

Answered by kiki9876
3

Answer:

(33√2+210)/34

Step-by-step explanation:

x=√2+6

1/x=1/√2+6

=1/√2+6×√2-6/√2-6

=√2-6/(√2)^2-(6)^2

=√2-6/2-36

=√2-6/-34

=6-√2/34

x+1/x=√2+6+6-√2/34

=(34√2+204-√2+6)/34

=(33√2+210)/34

Answered by Anonymous
10

Answer :-

 \tt x +  \dfrac{1}{x}  =  \dfrac{ 33\sqrt{2} + 210 }{34}

Solution :-

x = √2 + 6

1/x = 1/(√2 + 6)

Rationalise the denominator

 \sf \dfrac{1}{x} =  \dfrac{1}{ \sqrt{2} + 6}

The rationalising factor √2 + 6 is √2 - 6. So multiply both numerator and denominator.

 \sf =  \dfrac{1}{ \sqrt{2} + 6} \times  \dfrac{ \sqrt{2} - 6 }{ \sqrt{2} - 6 }

 \sf =  \dfrac{1( \sqrt{2} - 6) }{ \sqrt{2} + 6( \sqrt{2} - 6)}

 \sf =  \dfrac{ \sqrt{2} - 6}{ \sqrt{2} + 6( \sqrt{2} - 6)}

 \sf =  \dfrac{ \sqrt{2} - 6}{ {( \sqrt{2})}^{2} -  {(6) }^{2} }

[Because (x + y)(x - y) = x² - y²]

 \sf =  \dfrac{ \sqrt{2} - 6}{2 - 36 }

 \sf =  \dfrac{ \sqrt{2} - 6}{ - 34}

 \sf =   - \dfrac{ \sqrt{2} - 6}{34}

 \sf \dfrac{1}{x} =  -  \dfrac{ \sqrt{2} - 6 }{34}

Now find the value of x + 1/x

 \sf x + \dfrac{1}{x} =   \sqrt{2} + 6 + ( -  \dfrac{ \sqrt{2} - 6 }{34})

 \sf  =   \sqrt{2} + 6 -  \dfrac{ \sqrt{2} - 6 }{34}

Taking LCM

 \sf  =  \dfrac{ \sqrt{2}(34)}{1(34)}  +  \dfrac{6(34)}{1(34)}  -  \dfrac{ \sqrt{2} - 6 }{34}

 \sf  =  \dfrac{ 34\sqrt{2}}{34}  +  \dfrac{204}{34}  -  \dfrac{ \sqrt{2} - 6 }{34}

 \sf  =  \dfrac{ 34\sqrt{2} + 204 -  (\sqrt{2} - 6)}{34}

 \sf  =  \dfrac{ 34\sqrt{2} + 204 -  \sqrt{2} + 6}{34}

 \sf  =  \dfrac{ 33\sqrt{2} + 210 }{34}

 \bf x +  \dfrac{1}{x}  =  \dfrac{ 33\sqrt{2} + 210 }{34}

Similar questions