Please answer yourself
5+√2/5-√2 + 5-√2/5+√2 simplify?
Answers
Solution!!
[(5 + √2)/(5 - √2)] + [(5 - √2)/(5 + √2)]
Rationalise the denominator of the first fraction.
= [(5 + √2)/(5 - √2) × (5+ √2)/(5 + √2)] + [(5 - √2)/(5 + √2)]
= [(5 + √2)(5 + √2)/(5 - √2)(5 + √2)] + [(5 - √2)/(5 + √2)]
= [(5 + √2)²/(5² - √2²)] + [(5 - √2)/(5 + √2)]
= [(25 + 2 + 10√2)/(25 - 2)] + [(5 - √2)/(5 + √2)]
= [(27 + 10√2)/23] + [(5 - √2)/(5 + √2)]
Rationalise the denominator of the second fraction.
= [(27 + 10√2)/23] + [(5 - √2)/(5 + √2) × (5 - √2)/(5 - √2)]
= [(27 + 10√2)/23] + [(5 - √2)(5 - √2)/(5 + √2)(5 - √2)]
= [(27 + 10√2)/23] + [(5 - √2)²/(5² - 2)]
= [(27 + 10√2)/23] + [(25 + 2 - 10√2)/(25 - 2)]
= [(27 + 10√2)/23] + [(27 - 10√2)/23]
As the denominators are same, we can write all the numerators above a common denominator.
= [(27 + 10√2) + (27 - 10√2)]/23
= [27 + 10√2 + 27 - 10√2]/23
= [54]/23
= 54/23
Identities used:-
(a + b)(a - b) = a² - b²
(a + b)² = a² + b² + 2ab
(a - b)² = a² + b² - 2ab