please anwer my question
Answers
a cos∅-b sin∅=c
{squaring on both sides}
=>( a cos∅-b sin∅)²=c²
=>a²cos²∅+b²sin²∅-2absin∅cos∅=c².....,...(i)
now....
a sin∅+b cos∅=y (let)
{squaring on both sides}
=>(a sin∅+b cos∅)²=y²
=>a²sin²∅+b²cos²∅+2ab sin∅ cos∅=y²......(ii) adding equations (i)&(ii)...we get,,,
a²cos²∅+b²sin²∅-2absin∅cos∅+a²sin²∅+b²cos²∅+2ab sin∅ cos∅=c²+y²
=>a²(sin²∅+cos∅)+b²(sin∅+cos∅)=c²+y²
=>a²+b²-c²=y²
=>a sin∅+b cos∅ (proved)
Step-by-step explanation:
a cos∅-b sin∅=c
{squaring on both sides}
=>( a cos∅-b sin∅)²=c²
=>a²cos²∅+b²sin²∅-2absin∅cos∅=c².....,...(i)
now....
a sin∅+b cos∅=y (let)
{squaring on both sides}
=>(a sin∅+b cos∅)²=y²
=>a²sin²∅+b²cos²∅+2ab sin∅ cos∅=y²......(ii) adding equations (i)&(ii)...we get,,,
a²cos²∅+b²sin²∅-2absin∅cos∅+a²sin²∅+b²cos²∅+2ab sin∅ cos∅=c²+y²
=>a²(sin²∅+cos∅)+b²(sin∅+cos∅)=c²+y²
=>a²+b²-c²=y²
\begin{lgathered}= > y = \sqrt{a {}^{2} + b {}^{2} - c {}^{2} } \\\end{lgathered}
=>a sin∅+b cos∅
\begin{lgathered}= \sqrt{a {}^{2} + b {}^{2} - c {}^{2} } \\\end{lgathered}