Math, asked by bhargav5599, 10 months ago

please anwser it fastly.......

if a/k, a, ak are the roots of the equation x^3-px^2+qx-r=0 then a=​

Answers

Answered by Cynefin
10

✰Answer✰

♦️Given:

  • a/k, a, ak are the zeroes of cubic polynomial x^3- px^2+qx-r=0.

♦️To find:

  • Value of a....?

✰You must know✰

☛Let α, β, γ are the zeroes of cubic polynomial f(x) = ax^3 + bx^2 + cx + d = 0, Then

 \large{ \sf{ \star{sum \: of \: zeroes =  -  \frac{coefficient \: of \:  {x}^{2} }{coefficient \: of \:  {x}^{3} } }}} \\  \\  \large{ \sf{ \star{ sum \: of \: product \: of \: zeroes \: taken \: two \: at \: a \: time \:  =  \frac{coefficient \: of \: x}{coefficient \: of \:  {x}^{3} } }}} \\  \\  \large{ \sf{ \star{product \: of \: zeroes = -  \frac{constant \: term}{coefficient \: of \: of \:  {x}^{3} } }}}

☛With Reference to α,β,γ

 \large{ \sf{ \circ{  \:  \:  \: \alpha   + \beta  + \gamma =  \frac{ - b}{a}  }}} \\  \\  \large{ \sf{ \circ{ \:  \:  \:  \alpha  \beta  +  \beta  \gamma  +  \alpha  \gamma  =  \frac{ c}{a} }}} \\  \\  \large{ \sf{ \circ{\: \: \: \alpha  \beta  \gamma  =  \frac{ - d}{a} }}}

✰Solution✰

♦️According to question

f(x) = x^3-px^2+qx-r

Zeroes of f(x) = a/k, a, ak.

☛By using the concept above,

 \large{ \sf{ \rightarrow \:  \: product \: of \: zeroes =  -  \frac{constant \: term}{coefficient \: of \:  {x}^{3} } }} \\  \\  \large{ \sf{ \star{ \:  \: f(x) =   \red{ \underline{{x}^{3}}}  - p {x}^{2}  + qx  \red{ \underline{- r}}}}} \\  \\  \large{ \sf{ \rightarrow  \: \frac{a}{ \cancel{k}}  \times a \times a \cancel{k} =  \frac{ - r}{1} }} \\  \\  \large{ \sf{ \rightarrow \:  {a}^{3}  =  - r}} \\  \\  \large{ \sf{ \boxed{ \rightarrow \:   \boxed{ \purple{a =  \sqrt[3]{ - r} }}}}}

So final Answer

 \large{ \boxed{ \bf{a =   \sqrt[3]{ - r} }}}

Similar questions