Please any give the
Attachments:
Answers
Answered by
4
Given , PQR is an isosceles triangle inscribed in a circle . if PQ = PR = 25 cm, and QR = 14 cm.
then calculate the radius of the circle to the nearest cm.
solution :
-------------
let r be the required radius of circle and D be the mid point on QR.
since, QR = 14 cm and PD is perpendicular to QR.
then ,QD = QR /2 = 14 / 2 = 7 cm
QD = DR = 7 cm
from ∆ PDR ,
------------------
by Pythagoras theorm , we get
(PR)^2 = ( DR )^2 + ( PD )^2
(25 )^2 = ( 7 )^2 +( PD)^2
(PD)^2 = 625 - 49 = 576 cm
PD = √576 = 24 cm
OP = OR = r ( radius )
since, PD = 24 cm, and OP = r
then, OD = PD - OP = 24 - r
Solve for ' r ' :
-------------------
now in ∆ ODR ,
by Pythagoras theorem, we get
(OR )^2 = ( DR )^2 + ( OD )^2
r^2 = ( 7)^2 + ( 24 - r )^2
r^2 = 49 + 576 + r^2 - 48r
r^2 - r^2 = 625 - 48r
0 = 625 - 48r
48r = 625
r = 13.02 cm
therefore, radius of circle = 13.02 cm
Answer : radius = 13.02 cm
--------------------------------------------------------
then calculate the radius of the circle to the nearest cm.
solution :
-------------
let r be the required radius of circle and D be the mid point on QR.
since, QR = 14 cm and PD is perpendicular to QR.
then ,QD = QR /2 = 14 / 2 = 7 cm
QD = DR = 7 cm
from ∆ PDR ,
------------------
by Pythagoras theorm , we get
(PR)^2 = ( DR )^2 + ( PD )^2
(25 )^2 = ( 7 )^2 +( PD)^2
(PD)^2 = 625 - 49 = 576 cm
PD = √576 = 24 cm
OP = OR = r ( radius )
since, PD = 24 cm, and OP = r
then, OD = PD - OP = 24 - r
Solve for ' r ' :
-------------------
now in ∆ ODR ,
by Pythagoras theorem, we get
(OR )^2 = ( DR )^2 + ( OD )^2
r^2 = ( 7)^2 + ( 24 - r )^2
r^2 = 49 + 576 + r^2 - 48r
r^2 - r^2 = 625 - 48r
0 = 625 - 48r
48r = 625
r = 13.02 cm
therefore, radius of circle = 13.02 cm
Answer : radius = 13.02 cm
--------------------------------------------------------
Attachments:
mustafamaherroyal786:
Thanks a lot Sir
Similar questions