Physics, asked by aditiprasad69, 8 months ago

please any this question​

Attachments:

Answers

Answered by BrainlyTornado
2

QUESTION:

Calculate the de Broglie wavelength for

(i) A 6.626 kg iron ball moving at 10 m/s.

(ii) An electron moving at 72.73 m/s.

ANSWER:

The de Broglie wavelength

  • (i) \sf \lambda =   {10}^{ - 35}\ m

  • (ii) \sf \lambda =   {10}^{ -5}\ m

TO FIND:

  • The de Broglie wavelength for the given cases.

GIVEN:

  • (i) A 6.626 kg iron ball moving at 10 m/s.

  • (ii) An electron moving at 72.73 m/s.

EXPLANATION:

\boxed{\bold{De - Broglie Wavelength = \dfrac{h}{mv}}}

(i) A 6.626 kg iron ball moving at 10 m/s.

 \sf h = 6.626 \times  {10}^{ - 34} \ Js

 \sf m = 6.626  \ kg

 \sf v = 10\ m/s

\sf \lambda =  \dfrac{6.626 \times  {10}^{ - 34} }{6.626 \times 10}

\sf \lambda =  \dfrac{  {10}^{ - 34} }{ 10}

\sf \lambda =   {10}^{ - 35}\ m

(ii) An electron moving at 72.73 m/s.

 \sf h = 6.626 \times  {10}^{ - 34} \ Js

 \sf Mass\ of\ electron = 9.11 \times 10^{-31} \ kg

\sf v = 72.73  \ m/s

\sf \lambda =  \dfrac{6.626 \times  {10}^{ - 34} }{9.11 \times 10^{-31}   \times 72.73 }

 \sf 9.11 \times 72.73   \approx 662.6

\sf \lambda =  \dfrac{6.626 \times  {10}^{ - 34} }{662.6 \times 10^{-31}  }

\sf \lambda =  \dfrac{   {10}^{ - 34} }{100 \times  10^{-31}  }

\sf \lambda =  \dfrac{   {10}^{ - 34} }{ 10^{-29}  }

\sf \lambda =   {10}^{ - 5} \ m

Similar questions