Math, asked by pupskeelakavalakudi, 2 months ago

please anyone explain with steps the answer is 101°,79°​

Attachments:

Answers

Answered by OyeeKanak
47

 \huge{ \mathbf{ \underline{ \underline{{ \color{goldenrod}{❁} \pink{Question:- }}}}}}

If the two opposite angles formed at the point of

ntersection of the diagonals of a parallelogram

are 2x+61° and 3x+ 41°, find the adjacent angle

formed at the point.

Given:-

  • the two opposite angles formed at the point of intersection of the diagonals of a parallelogram are 2x+61° and 3x+ 41°.

To find:-

  • Adjacent angles formed at the point.

᯽︎Solution:-

  •  \large{ \boxed{ \sf{ \underline{ \pink{Opposite  \: angles \:  of \:   parallelogram \:  are  \: equal}}}}}

  •  \purple{ \dag} \:  \:  \:  \:  \:  \:  \sf{So  \: \angle \:AOD= \angle{COB}}

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: :  \red{ \implies} \bf \: 2x + 61 \degree = 3x + 41 \degree

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \pink{ :  \implies} \bf \: 3x - 2x = 61 - 41 \degree

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \purple{:  \implies} \bf \: x = 20 \degree

  • Now by keeping the value of x we will find the measure of AOD and COB

 \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \orange{: ↦ } \angle \:  \bf \: AOD = 2 \times 20 + 61 \degree \\  \:  \:  \:  \:  \:   \color{aqua}{:  ↦} \: 40 \degree + 61 \degree \\  \:  \:  \:  \:  \:  \:  \:  \color{goldenrod}{ : ↦  } \:  \:  \:  \:  \: 101 \degree

  \\  \:  \:  \:  \:  \:  \:  \:  \red{ : ↦} \angle \bf \:COB \:  = 3 \times 20 \degree + 41 ^{o}  \\  \:  \:  \:  \:  \:  \:  \color{maroon} : ↦ \bf \: 60 ^{o}  + 41 ^{o}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \color{aqua} : ↦ \: 101 ^{o}

Adjacent angles are ∠AOD and ∠COB:-

BOC +DOC=180°

3x+ 41° + ∠DOC=180°

101 +∠DOC=180°

∠DOC=180°-101

∠DOC=79°

 \sf \: ↠∠DOC=∠AOB \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \: (opposite \:  angles \:  of  \: a  \: || grm  \: are \:  equal)

Similarly ∠AOB=79°

  • Hence the answers ∠AOB=101° and ∠COD=79°

 \color{yellow}━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Attachments:
Answered by prakashpardeshi
0

Answer:

sorry

Step-by-step explanation:

5th and boy did not want the end of the cell phones

Similar questions