Math, asked by Anonymous7754, 2 months ago

Please anyone give the answer asap...​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given function is

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:f(x) = \begin{cases} &\sf{x + 3, \:  \:  \: for \: x \leqslant  - 3} \\ &\sf{2x, \:  \:  \: for \:  - 3 < x < 3}\\ &\sf{6x + 2, \:  \:  \: for \: x \geqslant 3} \end{cases}\end{gathered}\end{gathered}

Let first we check the continuity at x = - 3.

Consider, LHL at x = - 3

\rm :\longmapsto\:\displaystyle\lim_{x \to -3^-}  \: f(x)

\rm :\longmapsto\:\displaystyle\lim_{x \to -3^-}  \: x + 3

\red{\rm :\longmapsto\:Put \: x = -  3 - h, \: as \: x \:  \to \:  - 3, \: h \:  \to \: 0}

\rm \:  =  \:  \: \displaystyle\lim_{h \to 0}  \: ( - 3 - h + 3)

\rm \:  =  \:  \: \displaystyle\lim_{h \to 0}  \: ( - h)

\rm \:  =  \:  \: 0

Consider RHL at x = - 3

\rm :\longmapsto\:\displaystyle\lim_{x \to -3^ + }  \: f(x)

\rm \:  =  \:  \: \displaystyle\lim_{x \to -3^+ }  \: 2x

\red{\rm :\longmapsto\:Put \: x = -  3  +  h, \: as \: x \:  \to \:  - 3, \: h \:  \to \: 0}

\rm \:  =  \:  \: \displaystyle\lim_{h \to \: 0 }  \: 2( - 3 + h)

\rm \:  =  \:  \:  - 6

Since,

\rm :\longmapsto\:\displaystyle\lim_{x \to -3^-}  f(x) \:  \ne \: \displaystyle\lim_{x \to -3^ + } f(x)

\bf\implies \:f(x) \: is \: not \: continuous \: at \: x =  - 3

Now, To check continuity at x = 3

Consider, LHL at x = 3

\rm :\longmapsto\:\displaystyle\lim_{x \to 3^-}  \: f(x)

\rm \:  =  \:  \: \displaystyle\lim_{x \to 3^ -  }  \: 2x

\red{\rm :\longmapsto\:Put \: x =  3   -   h, \: as \: x \:  \to \: 3, \: h \:  \to \: 0}

\rm \:  =  \:  \: \displaystyle\lim_{h \to0}  \: 2(3 - h)

\rm \:  =  \:  \: 6

Consider RHL at x = 3

\rm :\longmapsto\:\displaystyle\lim_{x \to 3^ + }  \: f(x)

\rm \:  =  \:  \: \displaystyle\lim_{x \to 3^ + }  \: 6x + 2

\red{\rm :\longmapsto\:Put \: x =  3  +    h, \: as \: x \:  \to \: 3, \: h \:  \to \: 0}

\rm \:  =  \:  \: \displaystyle\lim_{h \to 0}  \: 6(3 + h) + 2

\rm \:  =  \:  \: 18 + 2

\rm \:  =  \:  \: 20

Since,

\rm :\longmapsto\:\displaystyle\lim_{x \to 3^-}  f(x) \:  \ne \: \displaystyle\lim_{x \to 3^ + } f(x)

\bf\implies \:f(x) \: is \: not \: continuous \: at \: x = 3

Similar questions