Math, asked by maddiegray369, 1 month ago

Please anyone provide the solution for this problem fast​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Given \:Question - }}

If

 \sf \: \dfrac{ {25}^{n} \times  {5}^{3} \times  {(125)}^{3}   }{5 \times  {(625)}^{4} } = 125, \: find \: n.

\begin{gathered}\large{\sf{{\underline{Formula \: Used - }}}}  \end{gathered}

 \boxed{ \bf{ \:  {x}^{m} \times  {x}^{n} =  {x}^{m + n}}}

 \boxed{ \bf{ \:  {x}^{m}  \div   {x}^{n} =  {x}^{m  -  n}}}

 \boxed{ \bf{ \:  {( {x}^{m} )}^{n} =  {x}^{mn}}}

 \boxed{ \bf{ \:  {x}^{m} =  {x}^{n}\bf\implies \:m = n}}

 \red{\large\underline{\sf{Solution-}}}

Given expression is

\rm :\longmapsto\:\dfrac{ {25}^{n} \times  {5}^{3} \times  {(125)}^{3}   }{5 \times  {(625)}^{4} } = 125

can be rewritten as

\rm :\longmapsto\:\dfrac{ {(5 \times 5)}^{n} \times  {5}^{3} \times  {(5 \times 5 \times 5)}^{3}   }{5 \times  {(5 \times 5 \times 5 \times 5)}^{4} } = 5 \times 5 \times 5

\rm :\longmapsto\:\dfrac{ {( {5}^{2} )}^{n}  \times  {5}^{3}  \times  {( {5}^{3} )}^{3} }{5 \times  {( {5}^{4}) }^{4} }  =  {5}^{3}

\rm :\longmapsto\:\dfrac{ {5}^{2n}  \times  {5}^{3}  \times  {5}^{9} }{5 \times  {5}^{16} }  =  {5}^{3}

\rm :\longmapsto\:\dfrac{ {5}^{2n + 3 + 9} }{ {5}^{1 + 16} }  =  {5}^{3}

\rm :\longmapsto\:\dfrac{ {5}^{2n + 12} }{ {5}^{17} }  =  {5}^{3}

\rm :\longmapsto\: {5}^{2n + 12 - 17}  =  {5}^{3}

\rm :\longmapsto\: {5}^{2n  - 5}  =  {5}^{3}

\rm :\longmapsto\:2n - 5 = 3

\rm :\longmapsto\:2n  = 3 + 5

\rm :\longmapsto\:2n  = 8

\bf\implies \:n \:  =  \: 4

Hence,

For the expression,

\bf :\longmapsto\:\dfrac{ {25}^{n} \times  {5}^{3} \times  {(125)}^{3}   }{5 \times  {(625)}^{4} } = 125,  \: value \: of\: n \:  =  \: 4

Similar questions