Math, asked by subhashpantha9, 3 months ago

please anyone solve the value of x....i need the full answer ​

Attachments:

Answers

Answered by Arceus02
3

Given:-

  •  \sqrt{x}  +  \sqrt{x -  \sqrt{1 - x} }  = 1

\\

To find:-

  • The value of x.

\\

Answer:-

Given that

 \sqrt{x}  +  \sqrt{x -  \sqrt{1 - x} }  = 1

 \longrightarrow \sqrt{x -  \sqrt{1 - x} }  = 1 -  \sqrt{x}

Squaring both sides,

{ \longrightarrow    {\Big(\sqrt{x -  \sqrt{1 - x} } \Big)}^{2}   =   {\Big(1 -  \sqrt{x} \Big)}^{2} }

Expanding R.H.S. using (a - b)² = a² + b² - 2ab with a = 1 and b = √x,

{\longrightarrow   x -  \sqrt{1 - x}   =    {1}^{2}  +  { (\sqrt{x}) }^{2}   - 2(1)( \sqrt{x} )}

{\longrightarrow    -  \sqrt{1 - x}   =    1  - 2\sqrt{x}}

Squaring both sides,

{\longrightarrow   { \big( -  \sqrt{1 - x} \big)}^{2}    =    { \big(1  - 2\sqrt{x}} \big)}^{2}

Expanding R.H.S. using (a - b)² = a² + b² - 2ab with a = 1 and b = 2√x,

{ \displaystyle\longrightarrow  1 - x   =  {1}^{2}  +  { (2 \sqrt{x}) }^{2}  - 2(1)(2 \sqrt{x} ) }

{ \displaystyle\longrightarrow  1 - x   =   1 +  4x  - 4 \sqrt{x} }

{ \displaystyle\longrightarrow  4 \sqrt{x}    =     4x  + x  }

{ \displaystyle\longrightarrow  4 \sqrt{x}    =  5x  }

{ \displaystyle\longrightarrow  \dfrac{ x }{ \sqrt{x} }   =  \dfrac{4}{5}  }

{ \displaystyle\longrightarrow  \sqrt{x}   =  \dfrac{4}{5}  }

Squaring both sides,

 \longrightarrow \underline{ \underline{x =  \dfrac{16}{25}}}

Similar questions