Math, asked by jharnapaul68, 10 months ago

Please anyone solve this problem.​

Attachments:

Answers

Answered by BrainlyPopularman
5

Question :

▪︎ In A.P.  \: { \bold{x \th \:  \: term  \:  \:  T_{x}  =  \dfrac{1}{y} }} \: and  \: { \bold{y \th \:  \: term  \:  \: T_{y}  =  \dfrac{1}{x} }} \: then Prove that –

 \: { \bold{  S_{xy}  =  \dfrac{1}{2}(xy + 1) }} \:

ANSWER :

• We know that nth term of A.P. is –

  \\ \longrightarrow \large { \red{ \boxed { \bold{  t_{n}  =  a + (n - 1)d }}}} \: \\

• Here –

  \\  { \bold{ \:  \:  \:  \:  \:  \:  \: . \:  \:  \: a = first \:  \: term}} \: \\

  \\  { \bold{ \:  \:  \:  \:  \:  \:  \: . \:  \:  \: d = common \:  \: difference}} \: \\

  \\  { \bold{ \:  \:  \:  \:  \:  \:  \: . \:  \:  \:  t_{n}  = n \th \:  \: term}} \: \\

  \\  { \bold{ \:  \:  \:  \:  \:  \:  \: . \:  \:  \:  n  = total \:  \: number \:  \: of \:  \: term}} \: \\

• So that –

  \\ \implies  { \bold{x \th \:  \: term \:  \: (  t_{x})  =  a + (x - 1)d}} \: \\

  \\ \implies  { \bold{ \dfrac{1}{y}  =  a + (x - 1)d \:  \:  \:  \:  -  -  -  - eq.(1)}} \: \\

  \\ \implies  { \bold{y \th \:  \: term \:  \: (  t_{y})  =  a + (y - 1)d}} \: \\

  \\ \implies  { \bold{ \dfrac{1}{x}  =  a + (y - 1)d \:  \:  \:  \:  -  -  -  - eq.(2)}} \: \\

• Now subtract eq.(1) by eq.(2) –

  \\ \implies  { \bold{ \dfrac{1}{y}  -  \dfrac{1}{x}  =  (a - a) + [(x - 1) - (y - 1)]d}} \: \\

  \\ \implies  { \bold{ \dfrac{1}{y}  -  \dfrac{1}{x}  =    (x - y)d}} \: \\

  \\ \implies  { \bold{  \dfrac{ \cancel{ (x - y) }}{xy}   =     \cancel{(x - y)}d}} \: \\

  \\ \implies  { \pink{ \bold{d =  \dfrac{1}{xy} }}} \: \\

• Put the value of 'd' in eq.(1)

  \\ \implies  { \bold{ \dfrac{1}{y}  =  a + (x - 1)( \dfrac{1}{xy} )}} \: \\

  \\ \implies  { \bold{  \cancel \dfrac{1}{y}  =  a +  \cancel \dfrac{1}{y} -  \dfrac{1}{xy}  }} \: \\

  \\ \implies  { \bold{  0  =  a -  \dfrac{1}{xy}  }} \: \\

  \\ \implies  { \pink{ \bold{ a =  \dfrac{1}{xy}  }}}\: \\

• We know that sum of n terms of A.P. is –

  \\ \longrightarrow \large { \red{ \boxed { \bold{  S_{n}  =  \dfrac{n}{2}  [ 2a + (n - 1)d ] }}}} \: \\

• Now put the values –

  \\ \implies { \bold{  S_{xy}  =  \dfrac{xy}{2}  [ 2( \dfrac{1}{xy})  + (xy - 1)( \dfrac{1}{xy} ) ] }} \: \\

  \\ \implies { \bold{  S_{xy}  =  \dfrac{ \cancel{xy}}{2}  \times  \dfrac{1}{ \cancel{xy}}  [ 2  + (xy - 1)  ] }} \: \\

  \\ \implies { \bold{  S_{xy}  =  \dfrac{ 1}{2}  (2  + xy - 1) }} \: \\

  \\ \implies { \pink{ \boxed{ \bold{  S_{xy}  =  \dfrac{ 1}{2}  ( xy  +  1) }}}} \: \\

  \\ \longrightarrow \large { \boxed{ \boxed{ \bold{Hence \:  \: proved}}}} \: \\

Similar questions