Math, asked by qnabrainly124, 1 month ago

Please anyone solve this question.​

Attachments:

Answers

Answered by MysticSohamS
1

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

To  \: Prove =  \\  \frac{1}{cosec \: θ + cot \: θ}  -  \frac{1}{sin \:θ }  =   \frac{1}{sin \:θ}   -  \frac{1}{cosec \:θ - cot \:θ \ }  \\ \\ ie \:  \:  \frac{1}{cosec \:θ + cot θ}  +  \frac{1}{cosec \: θ - cot \:θ}  =  \frac{1}{sin \:θ }  +  \frac{1}{sin \: θ}  \\  \\ let  \: \: LHS =  \frac{1}{cosec \:θ + cot \: θ }  +  \frac{1}{cosec \:θ - cot  \:θ }  \\  \\ RHS =  \frac{1}{sin \: θ}  +  \frac{1}{sin \: θ}

considering \: LHS \: first \\  =  \frac{1}{cosec \: θ + cot \:θ }  +  \frac{1}{cosec \: θ - cot \:θ }  \\  \\  =  \frac{cosec \:θ + cot \: θ + cosec \: θ - cot \:θ  }{(cosec \:θ + cot \:θ)(cosec \: θ - cot \: θ)}  \\  \\  =  \frac{2.cosec \:θ }{cosec {}^{2} θ - cot {}^{2} θ}  \\  \\  =  \frac{2.cosec \:θ }{1}  \\ since \: cosec {}^{2} θ - cot {}^{2} θ = 1 \\  \\ thus \: LHS = 2.cosec \: θ

now \: considering \: RHS \\  =  \frac{1}{sin \: θ}  +  \frac{1}{sin \: θ}  \\  \\  =  \frac{sin \:θ + sin \: θ }{sin \: θ.sin \:θ}  \\  \\  =  \frac{2.sin \: θ}{sin {}^{2} θ}  \\  \\  =  \frac{2}{sin \:θ }  \\  \\  = 2 \times  \frac{1}{sin \:θ }  \\  \\  = 2.cosec \: θ \\ since \:  \:  \frac{1}{sin \: θ}  = cosec \: θ \\  \:  \\ hence \: RHS = 2.cosec \: θ \\  \\ thus \: LHS=RHS \\ hence \: proved

Similar questions