Math, asked by NairaRajpal, 1 year ago

please anyone solve this question

Attachments:

Anonymous: Naira meri jAan hai
Anonymous: Naira Darling
Anonymous: Baby khaan ho
Anonymous: Bechari naira
Anonymous: Sun
Anonymous: Is question ka sole
Anonymous: Slope ka formula aata hai
Anonymous: Use that in question 1
Anonymous: Uske baad to hm bhi bhul bye ,, Ye chapter

Answers

Answered by abhi569
19

 \mathbf{Given \:  points  \: are  \:  \:  \: A ( 7 , - 3 )   \: and  \:  \: \:  B \:  ( 1 , 9  )  \:  \: , }




( i )  \:  \: The  \:  \: slope  \: \:  of \:  \:  line  \:  \: segment  \:  \: PQ  = \frac{ 9 - 7 } { 1  +  3 }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  | \:  \: m =  \frac{ y_{2} -  y_{1}  }{ x_{2} -  x_{1} }  \\    \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{2}{ - 1} \\    \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = - 2



 <  -  -   -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  >





( ii )   \mathbf{We \: \:   know, slope \:  \:  of  \:  \: any \:  \:  perpendicular \:  \:  bisector \:  \:  is \:  \:  the \:  \:  negative  \:  \: of  \:  \: the \:  \:  reciprocal  \:  \: of  \:  \: the  \:  \: slope  \:  \: of  \:  \: t he  \:  \: line \:  \:  segment .}  \: \\  \\  \\  Hence,


<br />Slope  \:  \: of \:  \:  perpendicular  \:  \: bisector = -( \frac{- 1}{2} )= \frac{1}{2}





 &lt;  -  -  -   -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  &gt;




( iii ) \\ \\ \\ Now,  \\  \\ <br /><br />( 3 ,  4 )  = ( x_{1} ,  y_{1} ) <br /><br /><br />\\ \\ <br />Hence, \\ \\ x_{1} = 3 \\ y_{1} = 4<br /><br />



 \mathbf{ Equation \:  \:  of \:  \:  perpendicular \:  \:  bisector = y - 3 =  \frac{1}{2} <br />(x - 4)} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  | \:  \:  \:  \: y -  y_{1} = m(x -  x_{1})




 =  &gt; 2y - 6 = x - 4 \\  \\  =  &gt; 2y - 6 - x +  4 = 0 \\  \\  =  &gt; 2y - x - 2 = 0





In ( - 2 , p ),  x = - 2  \:  \: and  \: y = p \\  \\  \\ so \\  \\  \\ 2y - x - 2 = 0 \\  \\  =  &gt; 2p - ( - 2) - 2 = 0 \\  \\  =  &gt; 2p  + 2 -  2 = 0 \\  \\ =  &gt;  2p   = 0 \\  \\  =  &gt; p =    \frac{0}{2}  \\  \\  =  &gt; p =  0

abhi569: (-:
Similar questions