Math, asked by snighdashreya42, 3 months ago

please anyone solve this question it's urgent​

Attachments:

Answers

Answered by suhail2070
0

Answer:

{m}^{2}  +  \frac{1}{ {m}^{2} }  = 11

Step-by-step explanation:

 {m}^{2}  - 3m - 1 = 0 \\  \\ discriminant =  {b}^{2} -  ac \\  \\  =  {( - 3)}^{2}  - 4(1)( - 1) \\  \\  = 9 + 4 = 13 \\  \\ m =  \frac{ - ( - 3)  +  \sqrt{13} }{2}  \:  \:  \:  \:  \:  \:  \:  \:  \: m = \frac{ - ( - 3)   -  \sqrt{13} }{2} \\  \\  m =  \frac{  (  3)  +  \sqrt{13} }{2}  \:  \:  \:  \:  \:  \:  \:  \:  \: m = \frac{  ( 3)   -  \sqrt{13} }{2} \\  \\ take \:  \:  \: m =   \frac{  (  3)  +  \sqrt{13} }{2} \\  \\  \\ then \:  \:  \:    \frac{1}{m}  =  \frac{2}{3 +  \sqrt{13} }  \\  \\ m =  \frac{2( 3 -  \sqrt{13} )}{3 +  \sqrt{13} }  \times  \frac{1}{3 -  \sqrt{13} }  \\  \\ m =  \frac{2(3 -  \sqrt{13} )}{9 - 13}  \\  \\ m =  \frac{3 -  \sqrt{13} }{ - 2}  \\  \\ m =   \frac{ \sqrt{13}  - 3}{2}  \\  \\  \\ therefore \:  \:  \: m +  \frac{1}{m}  =  \frac{3 +  \sqrt{13} +  \sqrt{13}  - 3 }{2}  =  \sqrt{13}  \\  \\  \\ now \:  \:  \:  \:  {m}^{2}  +   \frac{1}{ {m}^{2} }  = { (m +  \frac{1}{m} )}^{2}  - 2 =  { \sqrt{13} }^{2}  - 2 \\  \\  = 13 - 2 \\  \\  = 11 \\  \\ therefore \:  \:  \:  {m}^{2}  +  \frac{1}{ {m}^{2} }  = 11

Similar questions