Math, asked by aryankhandelwal0755, 4 months ago

please anyone tell me those who will tell me i will thank ful to him​

Attachments:

Answers

Answered by himanshujc7
0

Answer:

LHS=

 {( \frac{ {x}^{a} }{ {x}^{b} }) }^{ \frac{1}{ab} }  . {( \frac{ {x}^{b} }{ {x}^{c} }) }^{ \frac{1}{bc} }. {( \frac{ {x}^{c} }{ {x}^{a} }) }^{ \frac{1}{ac} } \\ =     {x}^{(a - b)( \frac{1}{ab}) } .{x}^{( b - c)( \frac{1}{bc}) }.{x}^{(c - a )( \frac{1}{ac}) }  \\ =   {x}^{ (\frac{a}{ab} -   \frac{b}{ab} ) } .{x}^{ (\frac{b}{bc} -   \frac{c}{bc} ) } .{x}^{ (\frac{c}{ac} -   \frac{a}{ac} ) }  \\ =   {x}^{(a - b)} .{x}^{(b - c)} .{x}^{(c - a)}  \\    = {x}^{(a - b + b - c + c - a)}  \\  =  {x}^{0}  \\  =1 \\  = rhs

=RHS

Hence proved

I hope this will help you

Similar questions