Math, asked by khushi5252, 19 days ago

Please APPROPRIATE RIGHT ANSWERS ONLY​

Attachments:

Answers

Answered by MysticSohamS
1

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: find : value \: of \:  \\ tan \: x + sec \: x \\  \\ given \: that :  \\ sin \: x =  \frac{p}{q}  \\  \\ we \: know \: that \\ cos {}^{2}  \: x = 1 - sin {}^{2}  \: x \\  = 1 - ( \frac{p}{q}  \: ) {}^{2}  \\  \\  = 1 -  \frac{p {}^{2} }{q {}^{2} }  \\  \\  =  \frac{q {}^{2}  - p {}^{2} }{q {}^{2} }  \\  \\ cos \: x =  \frac{ \sqrt{q {}^{2}  - p {}^{2} } }{q}  \\  \\ thus \: then \\ sec \: x =  \frac{q}{ \sqrt{q {}^{2} - p {}^{2}  } }

moreover \:  \\ we \: know \: that \\  \\ tan {}^{2}  \: x = sec {}^{2}  \: x - 1 \\ \\   =  \frac{q {}^{2} }{q {}^{2}  - p {}^{2} }  - 1 \\  \\  =  \frac{q {}^{2} - q {}^{2}   + p {}^{2} }{q {}^{2} - p {}^{2}  }  \\  \\  =  \frac{p {}^{2} }{q {}^{2} - p {}^{2}  }  \\  \\ tan \: x =  \frac{p}{ \sqrt{q {}^{2}  - p {}^{2} } }

thus \: then \\ tan \: x + sec \: x =   \frac{p}{ \sqrt{q {}^{2}   - p {}^{2} }  }  +  \frac{q}{ \sqrt{q {}^{2}  - p {}^{2} } }  \\  \\  =  \frac{p + q}{ \sqrt{q {}^{2}  - p {}^{2} } }  \\  \\  =  \frac{( \sqrt{p + q}  \: )( \sqrt{p + q} \: ) }{  \sqrt{(q + p)(q - p)}  }  \\  \\  =  \sqrt{ \frac{(p + q)(p + q)}{(q + p)(q - p)} }  \\  \\  =  \sqrt{ \frac{p + q}{q - p} }  \\  \\  =  \sqrt{ \frac{q + p}{q - p} }

Similar questions