Math, asked by prashikashrestha, 1 day ago

please assume p and as a and b

Attachments:

Answers

Answered by numberphile
0

Answer:

\sf \implies \displaystyle \int \dfrac{3x^{2}  + 1}{(x + 1)^{3}(x - 1)^{3}  } dx.\huge\mathcal{\pink{A}}\huge\mathcal{\purple{N}}\huge\mathcal{\green{S}}\huge\mathcal{\blue{W}}\huge\mathcal{\red{E}}\huge\mathcal{R}\sf \implies \displaystyle \int \dfrac{3x^{2}  + 1}{(x + 1)^{3}(x - 1)^{3}  } dx.\huge\mathcal{\pink{A}}\huge\mathcal{\purple{N}}\huge\mathcal{\green{S}}\huge\mathcal{\blue{W}}\huge\mathcal{\red{E}}\huge\mathcal{R}\sf \implies \displaystyle \int \dfrac{3x^{2}  + 1}{(x + 1)^{3}(x - 1)^{3}  } dx.\huge\mathcal{\pink{A}}\huge\mathcal{\purple{N}}\huge\mathcal{\green{S}}\huge\mathcal{\blue{W}}\huge\mathcal{\red{E}}\huge\mathcal{R}\sf \implies \displaystyle \int \dfrac{3x^{2}  + 1}{(x + 1)^{3}(x - 1)^{3}  } dx.\huge\mathcal{\pink{A}}\huge\mathcal{\purple{N}}\huge\mathcal{\green{S}}\huge\mathcal{\blue{W}}\huge\mathcal{\red{E}}\huge\mathcal{R}\huge\mathcal{\pink{A}}\huge\mathcal{\purple{N}}\huge\mathcal{\green{S}}\huge\mathcal{\blue{W}}\huge\mathcal{\red{E}}\huge\mathcal{R}\sf \implies \displaystyle \int \dfrac{3x^{2}  + 1}{(x + 1)^{3}(x - 1)^{3}  } dx.\huge\mathcal{\pink{A}}\huge\mathcal{\purple{N}}\huge\mathcal{\green{S}}\huge\mathcal{\blue{W}}\huge\mathcal{\red{E}}\huge\mathcal{R}\sf \implies \displaystyle \int \dfrac{3x^{2}  + 1}{(x + 1)^{3}(x - 1)^{3}  } dx.\huge\mathcal{\pink{A}}\huge\mathcal{\purple{N}}\huge\mathcal{\green{S}}\huge\mathcal{\blue{W}}\huge\mathcal{\red{E}}\huge\mathcal{R}\sf \implies \displaystyle \int \dfrac{3x^{2}  + 1}{(x + 1)^{3}(x - 1)^{3}  } dx.\huge\mathcal{\pink{A}}\huge\mathcal{\purple{N}}\huge\mathcal{\green{S}}\huge\mathcal{\blue{W}}\huge\mathcal{\red{E}}\huge\mathcal{R}\sf \implies \displaystyle \int \dfrac{3x^{2}  + 1}{(x + 1)^{3}(x - 1)^{3}  } dx.\huge\mathcal{\pink{A}}\huge\mathcal{\purple{N}}\huge\mathcal{\green{S}}\huge\mathcal{\blue{W}}\huge\mathcal{\red{E}}\huge\mathcal{R}\sf \implies \displaystyle \int \dfrac{3x^{2}  + 1}{(x + 1)^{3}(x - 1)^{3}  } dx.\huge\mathcal{\pink{A}}\huge\mathcal{\purple{N}}\huge\mathcal{\green{S}}\huge\mathcal{\blue{W}}\huge\mathcal{\red{E}}\huge\mathcal{R}\sf \implies \displaystyle \int \dfrac{3x^{2}  + 1}{(x + 1)^{3}(x - 1)^{3}  } dx.\huge\mathcal{\pink{A}}\huge\mathcal{\purple{N}}\huge\mathcal{\green{S}}\huge\mathcal{\blue{W}}\huge\mathcal{\red{E}}\huge\mathcal{R}\sf \implies \displaystyle \int \dfrac{3x^{2}  + 1}{(x + 1)^{3}(x - 1)^{3}  } dx.\huge\mathcal{\pink{A}}\huge\mathcal{\purple{N}}\huge\mathcal{\green{S}}\huge\mathcal{\blue{W}}\huge\mathcal{\red{E}}\huge\mathcal{R}\sf \implies \displaystyle \int \dfrac{3x^{2}  + 1}{(x + 1)^{3}(x - 1)^{3}  } dx.\huge\mathcal{\pink{A}}\huge\mathcal{\purple{N}}\huge\mathcal{\green{S}}\huge\mathcal{\blue{W}}\huge\mathcal{\red{E}}\huge\mathcal{R}\sf \implies \displaystyle \int \dfrac{3x^{2}  + 1}{(x + 1)^{3}(x - 1)^{3}  } dx.\huge\mathcal{\pink{A}}\huge\mathcal{\purple{N}}\huge\mathcal{\green{S}}\huge\mathcal{\blue{W}}\huge\mathcal{\red{E}}\huge\mathcal{R}\sf \implies \displaystyle \int \dfrac{3x^{2}  + 1}{(x + 1)^{3}(x - 1)^{3}  } dx.\huge\mathcal{\pink{A}}\huge\mathcal{\purple{N}}\huge\mathcal{\green{S}}\huge\mathcal{\blue{W}}\huge\mathcal{\red{E}}\huge\mathcal{R}\sf \implies \displaystyle \int \dfrac{3x^{2}  + 1}{(x + 1)^{3}(x - 1)^{3}  } dx.\huge\mathcal{\pink{A}}\huge\mathcal{\purple{N}}\huge\mathcal{\green{S}}\huge\mathcal{\blue{W}}\huge\mathcal{\red{E}}\huge\mathcal{R}\sf \implies \displaystyle \int \dfrac{3x^{2}  + 1}{(x + 1)^{3}(x - 1)^{3}  } dx.

Similar questions