Math, asked by vermaabhay822, 9 months ago

please bro help to solve pleaseplease bro help to solve please​

Attachments:

Answers

Answered by BrainlyConqueror0901
9

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\int \limits^{ \frac{\pi}{2} } _{0} ( {cos}^{2} x) dx = 0.785}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given : }}  \\  \tt:  \implies  \int \limits^{ \frac{\pi}{2} } _{0} ( {cos}^{2} x) dx \\  \\ \red{\underline \bold{To \: Find: }}  \\  \tt:  \implies  \int \limits^{ \frac{\pi}{2} } _{0} ( {cos}^{2} x) dx =?

• According to given question :

\tt:  \implies  \int \limits^{ \frac{\pi}{2} } _{0} ( {cos}^{2} x) dx \\ \\ \tt\circ\:2\:cos^{2}=1+cos\:2x  \\\\ \tt:  \implies  \int \limits^{ \frac{\pi}{2} } _{0}  \bigg( \frac{1 + cos \:  2x}{2} \bigg )dx \\  \\ \tt:  \implies  \frac{1}{2} \int \limits^{ \frac{\pi}{2} } _{0} (1 + cos \: 2x)dx \\\\ \tt\circ\:\int cos\:x=sin\:x \\\\ \tt:  \implies  \frac{1}{2}  \bigg[x +  \frac{sin \: 2x}{2}  \bigg]^{ \frac{\pi}{2} }_{0} \\  \\ \tt:  \implies  \frac{1}{2}  \bigg[\bigg( \frac{\pi}{2}  +  \frac{sin  \: 2 \times  \frac{\pi}{2} }{2}  \bigg) -\bigg( \frac{0}{2}   +  \frac{sin \: 2 \times 0}{2} \bigg)\bigg] \\  \\ \tt:  \implies  \frac{1}{2} \bigg[\bigg( \frac{3.14}{2}  +  \frac{sin \:  \pi}{2}\bigg)  - (0 + 0)\bigg] \\  \\ \tt:  \implies  \frac{1}{2} (1.57 + 0) \\  \\  \green{\tt:  \implies 0.785} \\  \\  \green{\tt \therefore   \int \limits^{ \frac{\pi}{2} } _{0} ( {cos}^{2} x) dx = 0.785}

Answered by CunningKing
60

\boxed{\underline{\rule{200}{10}}}

✪ CHECK THE ATTACHMENT FOR THE SOLUTION ✪

\boxed{\underline{\rule{200}{10}}}

Attachments:

BrainlyConqueror0901: well done : )
Similar questions