Math, asked by Hirearyan, 1 year ago

please brooos or sisters prove that​

Attachments:

Answers

Answered by Sharad001
105

QuesTion :-

Prove that :

 \to \:  \frac{ \cos A  }{ \csc A \: \:  + 1}  +  \frac{  \cos A\: }{ \csc A \:  - 1}  = 2 \tan  A \\

Used Formula :-

 \boxed{ \star} \:  \: \:   { \csc}^{2}  \theta  -   { \cot}^{2}  \theta = 1 \\  \\  \boxed{ \star} \:  \:  \:  \frac{ \sin \theta}{ \cos \theta}  =  \tan \theta \\  \\  \boxed{ \star}  \: \:  \frac{ \cos \theta}{ \sin \theta}  =  \cot \theta \:

Solution :-

Taking Left hand side ( LHS)

\to   \frac{ \cos A  }{ \csc A \: \:  + 1}  +  \frac{  \cos A\: }{ \csc A \:  - 1}   \\  \\   \sf \: taling \: lcm \\  \\  \to   \frac{ \cos A( \csc A - 1) +  \cos A ( \csc A  + 1)}{( \csc A \: \:  + 1)( \csc A - 1)}   \\  \:  \\ \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \because \: (x + y)(x - y) =  {x}^{2}  -  {y}^{2} } \\  \\  \to  \frac{\cos A \csc A \:  - \cos A +\cos A \csc A +\cos A }{ { \csc}^{2} A  - 1}  \\    \because \:  { \csc}^{2} \theta - 1 =  { \cot}^{2} \theta \\  \therefore   \\   \to  \frac{2 \: \csc A \: \cos A}{ { \cot}^{2}  A}   \\  \because \csc \theta =  \frac{1}{ \sin \theta}  \: and \:  \cot \theta =  \frac{ \cos \theta}{ \sin \theta}  \\  \therefore \\  \\  \to \: 2 \frac{ \cos A}{ \sin A \:  \times  \frac{ { \cos }^{2}  A}{ {\sin }^{2} A } }  \\  \\  \to \: 2 \frac{1}{ \frac{\cos A}{ \sin A } }  \\  \\  \to \: 2 \frac{\sin A}{ \cos A\: }  \\  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{\because \:  \frac{ \sin \theta}{ \cos \theta}  =  \tan \theta} \\  \\  \to \: 2 \tan  A \\  \\  \to \boxed{  \frac{ \cos A  }{ \csc A \: \:  + 1}  +  \frac{  \cos A\: }{ \csc A   - 1}  = 2 \tan  A }\\  \:

Hence proved .

Answered by Anonymous
50

\huge\underline\mathrm{Question-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Prove that : \tt{\dfrac{CosA}{CosecA+1}+\dfrac{CosA}{CosecA-1}} = \tt{2\:TanA}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\huge\underline\mathrm{Solution-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Taking LHS,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\tt{\dfrac{CosA}{CosecA+1}+\dfrac{CosA}{CosecA-1}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

By taking LCM,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\mapsto \tt{\dfrac{(CosecA-1)(CosA)+(CosA)(CosecA+1)}{(CosecA+1)(CosecA-1)}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

By using : (a+b)(a-b) = -

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\mapsto \tt{\dfrac{CosecACosA-\cancel{CosA}+CosACosecA+\cancel{CosA}}{Cosec^2\:A-1}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

By using : Cosec²A - 1 = Cot²A

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\mapsto \tt{\dfrac{2CosecACotA}{Cot^2\:}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

By changing in the Ratios of sin and cos.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\mapsto \tt{\dfrac{\frac{ 2\cos(A) }{ \sin(A) }}{ { \cot(A) }^{2}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

We know that, \tt{\bold{\dfrac{CosA}{SinA}=CotA}} and \tt{\bold{\dfrac{1}{CotA}=TanA}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\mapsto \tt{\dfrac{2\cancel{CotA}}{\cancel{(CotA)}(CotA)}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\mapsto \tt{2TanA}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\mapsto RHS

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large{\boxed{\tt{\therefore\:\dfrac{CosA}{CosecA+1}+\dfrac{CosA}{CosecA-1}=2TanA}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Hence proved!

Similar questions