Math, asked by akankshaguptaji8, 9 months ago

please buddy solve kar do iska answer aaya h (b) wala solve kar do​

Attachments:

Answers

Answered by vandanameena29
0

Answer:

ok buddy don't worry.

Y=60°

Z=120°

X=60°

I hope it is helpful for you.

Answered by Anonymous
1

Answer:

x = 60°

y = 60°

z = 120°

Explanation:

\\\\

We know that opposite angles and opposite sides of a parallelogram are equal.

\\

So,

\angle DAB =\angle BCD\\  \\

\\

Therefore, y = 60°

\\

\angle ADC =\angle ABC \\  \\\angle ADC =z \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\

\\\\

Also, the sum of adjacent angles of a parallelogram is 180°

\\

Therefore ,

\\

\angle \: ADC  +\angle  DAB = 180^{\circ}  \\  z + 60^{\circ}  = 180^{\circ}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ z =  {120}^{\circ}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\

\\\\

Also,

Sum of linear pairs is always 180°.

\\

Therefore,

\\

\angle \: ADE  +\angle ADC =  {180}^{\circ}  \\ x + z =  {180}^{\circ}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ x =  {180}^{\circ}  -  {120}^{\circ}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ x =  {60}^{\circ}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\\\\\\

Therefore, the answer is :

x = 60°

y = 60°

z = 120°

\\\\\\

Other Formulas:

\\\\

1) Sum of Interior Angles of a polygon where n is the number of sides of polygon= (2n - 4) * 90°

\\\\

2)Number of sides of a polygon when exterior angle is given =\frac{360^{°}}{x}\\

where x is the exterior angle

\\\\

3) Sum of all exterior angles of any polgon = 360°

\\\\

4) Number of diagonals of n sided polygon = \frac{n(n-1)}{2}-n\\\\

5) Sum of exterior and interior angle of a polygon of n sides = 180°

Similar questions