please can anyone explain me this problem
Attachments:
Answers
Answered by
9
16.
Given : a^b = b^c = ab.
Let a^b = b^c = ab = k{Some constant}
(i)
⇒ a^b = k
Apply 'log' on both sides, we get
⇒ log(a^b) = log(k)
⇒ b log a = log k
⇒ log a = log k/b
(ii)
⇒ b^c = k
Apply 'log' on both sides, we get
⇒ log(b^c) = log(k)
⇒ c log b = log k
⇒ log b = log k/c
(iii)
⇒ ab = k
⇒ log(ab) = log (k)
We know that log(ab) = log a + log b
⇒ log a + log b = log k
⇒ (log k/b) + (log k/c) = log k
⇒ log k(1/b + 1/c) = log k
⇒ 1/b + 1/c = 1
⇒ b + c/bc = 1
⇒ b + c = bc.
Therefore, the answer is bc - Option (4).
Hope this helps!
Similar questions