Math, asked by sbgbr123, 1 month ago

please can anyone solve it​

Attachments:

Answers

Answered by shadowsabers03
6

Given,

\small\text{$\displaystyle\longrightarrow\sum_{k=1}^N\dfrac{2k+1}{(k^2+k)^2}=0.9999$}

We take,

  • \small\text{$2k+1=k^2+2k+1-k^2=(k+1)^2-k^2$}
  • \small\text{$(k^2+k)^2=\big(k(k+1)\big)^2=k^2(k+1)^2$}

Then,

\small\text{$\displaystyle\longrightarrow\sum_{k=1}^N\dfrac{(k+1)^2-k^2}{k^2(k+1)^2}=0.9999$}

\small\text{$\displaystyle\longrightarrow\sum_{k=1}^N\left(\dfrac{1}{k^2}-\dfrac{1}{(k+1)^2}\right)=0.9999$}

\small\text{$\displaystyle\longrightarrow\sum_{k=1}^N\dfrac{1}{k^2}-\sum_{k=1}^N\dfrac{1}{(k+1)^2}=0.9999$}

We see that,

  • \small\text{$\displaystyle\sum_{k=a}^bf(k)=\sum_{k=a+r}^{b+r}f(k-r)$}

Thus second sum in the LHS can be taken as, [a = 1, b = N, f(k) = 1/[(k+1)^2], r = 1]

  • \small\text{$\displaystyle\sum_{k=1}^N\dfrac{1}{(k+1)^2}=\sum_{k=2}^{N+1}\dfrac{1}{k^2}$}

Then,

\small\text{$\displaystyle\longrightarrow\sum_{k=1}^N\dfrac{1}{k^2}-\sum_{k=2}^{N+1}\dfrac{1}{k^2}=0.9999$}

The term for k=1 is taken out from first sum, and the term for k=N+1 is taken out from second sum.

\small\text{$\displaystyle\longrightarrow\left(\dfrac{1}{1^2}+\sum_{k=2}^N\dfrac{1}{k^2}\right)-\left(\sum_{k=2}^N\dfrac{1}{k^2}+\dfrac{1}{(N+1)^2}\right)=0.9999$}

\small\text{$\displaystyle\longrightarrow1+\sum_{k=2}^N\dfrac{1}{k^2}-\sum_{k=2}^N\dfrac{1}{k^2}-\dfrac{1}{(N+1)^2}=0.9999$}

\small\text{$\displaystyle\longrightarrow1-\dfrac{1}{(N+1)^2}=\dfrac{9999}{10000}$}

\small\text{$\displaystyle\longrightarrow\dfrac{1}{(N+1)^2}=1-\dfrac{9999}{10000}$}

\small\text{$\displaystyle\longrightarrow\dfrac{1}{(N+1)^2}=\dfrac{1}{10000}$}

\small\text{$\displaystyle\longrightarrow(N+1)^2=10000$}

\small\text{$\displaystyle\longrightarrow N+1=\pm100$}

\small\text{$\displaystyle\longrightarrow N=\pm100-1$}

\small\text{$\displaystyle\longrightarrow N=99\quad OR\quad N=-101$}

Since N is a positive integer,

\small\text{$\displaystyle\longrightarrow\underline{\underline{N=99}}$}

Hence the value of N is 99.

Similar questions