Math, asked by biswa001, 8 months ago

please can anyone solve no 47​

Attachments:

Answers

Answered by Ridvisha
152

{ \dagger{ \bold{ \red{ \:  \: given}}}}



{ \star{ \bold{ \:  \:  \:  {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 2abc}}}




{ \dagger{ \bold{ \red{ \:  \:  \: simplify}}}}




{ \bold{  \purple{ {( {2}^{ \frac{1}{ab} }) }^{c} . {( {2}^{ \frac{1}{bc} }) }^{a} . {( {2}^{ \frac{1}{ac} } )}^{b} }}}




{  \dagger{ \bold{ \red{ \:  \:  \: solution}}}}




{ \bold{ =  {( {2}^{ \frac{1}{ab} }) }^{c}. {( {2}^{ \frac{1}{bc} }) }^{a}  . {( {2}^{ \frac{1}{ac} }) }^{b} }}





{ \bold{ = ( {2}^{ \frac{c}{ab} } ).( {2}^{ \frac{a}{bc} }). {( {2}^{ \frac{b}{ac} } )}}}




{ \bold{ =  {2}^{( \frac{c}{ab} + \frac{a}{bc}   +  \frac{b}{ac})  } }}





{ \bold{ =  {2}^{( \frac{ {c}^{2} +  {a}^{2}   +  {b}^{2} }{abc}) }}}





{ \bold{  =  {2}^{( \frac{ {a}^{2} +  {b}^{2}   +  {c}^{2} }{abc}) }}}





{ \bold{ =  {2}^{( \frac{2abc}{abc} )} }}





{ \bold{  =  {2}^{2} }}




{ \bold{ \huge{ \purple{ = 4}}}}

Similar questions