Math, asked by HayahMehak00, 7 hours ago

Please can I have an answer?

Attachments:

Answers

Answered by xSoyaibImtiazAhmedx
3

Solution:-

 \large \bold{ \tt{ \frac{sinA }{1 + cosA}  +  \frac{1 +cosA }{sinA} }}

 =  \large  \color{blue}\bold{ \tt{ \frac{ sinA \times sin A \:  + (1 + cosA)(1 + cosA)}{(1 + cosA) \: sinA}}}

 =  \large  \color{blue}\bold{ \tt{ \frac{  {sin}^{2}  A \:  +  {(1 + cosA)}^{2} }{(1 + cosA) \: sinA}}}

 =  \large  \color{blue}\bold{ \tt{ \frac{  {sin}^{2}  A \:  +  { {1}^{2} + 2 \times 1 \times cosA +  {cosA}^{2} }}{(1 + cosA) \: sinA}}}

 =  \large  \color{blue}\bold{ \tt{ \frac{  {sin}^{2}  A \:  +  { {1}^{} + 2cosA +  {cosA}^{2} }}{(1 + cosA) \: sinA}}}

=  \large  \color{blue}\bold{ \tt{ \frac{  {sin}^{2}  A \:  +  {cosA}^{2} + 2cosA  + 1  }{(1 + cosA) \: sinA}}}

=  \large  \color{blue}\bold{ \tt{ \frac{  1 + 2cosA  + 1  }{(1 + cosA) \: sinA}}}

=  \large  \color{blue}\bold{ \tt{ \frac{  2+ 2cosA  }{(1 + cosA) \: sinA}}}

=  \large  \color{blue}\bold{ \tt{ \frac{  2(1+ cosA)  }{(1 + cosA) \: sinA}}}

=  \large  \color{blue}\bold{ \tt{ \frac{  2 }{ \: sinA}}}

=  \large   \underbrace{\color{blue}{\bold{ 2 \: cosecA}}}

Answer:- (4) 2cosecA

Similar questions