please can you give solution of this
Answers
Answer:
1
Step-by-step explanation:
x=a sin teta
x/a=sin teta
a/x=1/sin teta=cosec teta
y=b tan teta
y/b=tan teta
b/y=1/tan teta=cot teta
(a/x)^2-(b/y)^2=cosec^2 teta-cot^2 teta
=1(formula)
Given :-
x = a sin θ
y = b tan θ
To find :-
(a²/x²)-(b²/y²) = 1
Solution :-
Given that
x = a sin θ
=> x/a = sin θ
=> 1/(x/a) = 1/ sin θ
=> a/x = cosec θ
On squaring both sides then
(a/x)² = (cosec θ)²
=> a²/x² = cosec² θ ------------(1)
and
Given that
y = b tan θ
=> y/b = tan θ
=> 1/(y/b) = 1/ tan θ
=> b/y = cot θ
On squaring both sides then
=> (b/y)² = ( cot θ)²
=> b²/y² = cot² θ -------------(2)
On subtracting (2) from (1)
=> (1) - (2)
=> (a²/x²)-(b²/y²) = cosec² θ - cot² θ
Therefore , (a²/x²)-(b²/y²) = 1
Since, cosec² A - cot² A = 1
Hence, Proved.
Answer :-
(a²/x²)-(b²/y²) = 1
Used formulae:-
• cosec θ = 1/ sin θ
• cot θ = 1/ tan θ
• cosec² A - cot² A = 1