Math, asked by Anonymous, 11 months ago

please check attachment​

Attachments:

Answers

Answered by FIREBIRD
2

Step-by-step explanation:

Let the value of helmet be x

x + x + x = 36

x = 12

Let the value of bag be y

y + x + y = 20

2y = 8

y = 4

Let the value of flare gun be z

y + z + z = 10

2z = 6

z = 3

so

x + y + z

12 + 4 + 3

21

#answerwithquality #BAL

Answered by keenjal
3

\huge\boxed{\fcolorbox{blue}{grey}{Answer}} : =  >  \\  \\  \large \: \: we \:  \: can \: \: assume \:  \:  =  > helmet \: \:  = x \\  \\    \large \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  > bag = y \\  \\ \large  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  > gun  = z \\  \\ so \:  \: first \:  \: . \:  \:  \:  x + x + x = 36 \\  \\  3x = 36 \\  \\ x =  \frac{36}{3}  \\  \\ x = 12 \\  \\ in \:  \: second \:  \: case \:  \: . \:  \: y + x + y = 20 \\  \\ y + 12 + y = 20 \\  \\ 2y + 12 = 20 \\  \\ 2y = 20 - 12 \\  \\ 2y = 8 \\  \\ y =  \frac{8}{2}  \\  \\ y = 4 \\  \\ in \:  \: third \:  \: case \:  \: . \:  \: y + z + z = 10 \\  \\ 4 + 2z = 10 \\  \\ 2z = 6 \\  \\ z =  \frac{6}{2} z = 3 \\  \\ so \:  \: now \:  \: for \:  \:  last \:  \: case \: . \:  \: x - y \times z  \\  \\  = 12 - 4 \times 3 \:  \\  \\  = 12 - 12  \:  \:  \:  \:  \:  \:  \:  \:\\  \\  = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

so I hope this will be help you

and I'm also from Ahmedabad..xD

Similar questions