Math, asked by ag8175, 1 month ago

please copy main solve karke bhej do bohat important hai urgent​

Attachments:

Answers

Answered by Anonymous
3

Question -

The length and breadth of a rectangle are (a² + ab + b²) units and (a-b) units respectively. Find the area and perimeter of rectangle.

__________________________

Solution-

Given,

  • length of a rectangle = (a² + ab + b²) units
  • breadth of a rectangle = (a-b) units

To find,

  • the area of rectangle
  • the perimeter of rectangle.

Solution,

Area of rectangle = (l × b) units.

where,

l = length & b = breadth (of the rectangle)

Putting the values of l and b (length and breadth)

\implies\sf{(a² + ab + b²) ×  (a-b)}

\implies\sf{(a² + ab + b²) - b(a² + ab + b²) }

\implies\sf{a^3 \cancel{+ a^{2}b} \cancel{+ ab^2} - \cancel{a^{2}b }\cancel{- ab^{2}} - b^{3}}

{\footnotesize{\therefore{\boxed{\bf{Area\: of\: rectangle => a^3 - b^3units.}}}}}

Perimeter of rectangle = {2(l + b)} units.

where,

l = length & b = breadth (of the rectangle)

Putting the values of l and b (length and breadth)

\implies\sf{2\{(a^2 + ab + b^2) + (a-b)\}}

{\footnotesize{\therefore{\boxed{\bf{Perimeter\: of\: rectangle => \{2(a^2 + ab + b^2 + a - b)\}units.}}}}}

__________________________

Note:- You may obtain the handwritten solution from the attachment.

__________________________

Attachments:
Similar questions