Math, asked by Sarvocch786, 9 months ago

please differentiate the above.​

Attachments:

Answers

Answered by akhilakramesh0511
1

Step-by-step explanation:

d/dx [ sin x (ln x) ]

consider y = sin(x) ln(x)

dy/dx = [d/dx(sin(x))] ln(x)+sin(x) d/dx(ln(x))

dy/dx = cos(x)ln(x)+sin(x)(1/x)

Answered by diwanamrmznu
9

Solution:-

 \implies \:  \frac{d}{dx}  \sin\: x \:  ln \: x   \\

We know that formula of

  \frac{d}{dx} fx.gx =  gx\frac{d}{dx}fx  + fx \:  \frac{d}{dx}gx  \\  \\

 \implies \:  ln \: x \:  \frac{d}{dx}  \sin \: x  +  \sin \: x \:  \frac{d}{dx} ln \: x \\

_________________

we know that

d/dx sinx=cos x

d/dx in x=1/x

_________________

 \implies \:  ln \: x \:.  \cos \: x +  \sin \: x . \frac{1}{x}  \\

______________________________

I hope it helps you

Similar questions