Please do all steps.
Attachments:
Answers
Answered by
24
Solution
Prove:-
- sin θ( 1 + tan θ) + cos θ (1 + cot θ) = sec θ + cosec θ.
Explanation
Take first Left Hand Side.
➛ sin θ( 1 + tan θ) + cos θ (1 + cot θ)
We Have,
➛ sin θ ( 1 + sin θ/cos θ) + cos θ ( 1 + cos θ/ sin θ)
➛ sin θ ( sin θ + cos θ)/cos θ + cos θ ( cos θ + sin θ)/ sin θ
➛[sin² θ( sin θ + cos θ) + cos² θ( sin θ + cos θ)]/(sin θ cos θ)
➛ ( sin θ + cos θ) [(sin² θ + cos² θ) /(cos θ. sin θ)]
We Know,
➛ ( sin θ + cos θ)[ 1/(cos θ. sin θ) ]
➛ sin θ / (cos θ. sin θ) + cos θ /(cos θ. sin θ)
➛ 1/(cos θ) + 1/(sin θ)
We Know,
➛ sec θ + csc θ
Or,
➛ sec θ + cosec θ
R.H.S.
That's Proved.
_________________
Similar questions