Math, asked by vishistagangarapu, 1 month ago

please do answer this​

Attachments:

Answers

Answered by TrustedAnswerer19
21

2) \:  \:  \:  \frac{1}{2 \sqrt{x} }  \sf \:  \:  \:  \: is \: the \: answer

Step-by-step explanation:

 \displaystyle \lim_{h\to \: 0} \bf \:  \frac{ \sqrt{x + h} -  \sqrt{x}  }{h}  \\  \\  =  \displaystyle \lim_{h\to \: 0} \bf \:  \frac{( \sqrt{x + h} -  \sqrt{x} )( \sqrt{x + h} +  \sqrt{x} )  }{h( \sqrt{x + h}  +  \sqrt{x} )}  \\  \\   = \displaystyle \lim_{h\to \: 0} \bf \:  \frac{ {( \sqrt{x + h} })^{2} -  {( \sqrt{x} })^{2}  }{h( \sqrt{x + h}  +  \sqrt{x}) }  \\  \\  =  \displaystyle \lim_{h\to \: 0} \bf \:  \frac{x + h - x}{h( \sqrt{x + h}  +  \sqrt{x}) }  \\  \\  =  \displaystyle \lim_{h\to \: 0} \bf \:  \frac{ \cancel h}{ \cancel{h}( \sqrt{x + h}  +  \sqrt{x} )}  \\  \\  =  \displaystyle \lim_{h\to \: 0} \bf \:  \frac{1}{ \sqrt{x + h}  +  \sqrt{x} }  \\  \\  =  \frac{1}{ \sqrt{x + 0} +   \sqrt{x}  }  \\  \\  =    \frac{1}{ \sqrt{x}  +  \sqrt{x} }  \\  \\  =  \frac{1}{2 \sqrt{x} }

Similar questions