Math, asked by nnalina86, 6 months ago

please do fast please​

Attachments:

Answers

Answered by TakenName
3

Answer:

The number 104 can be shown as 100+4.

Then the square(104²) can be shown as (100+4)²

\sf{(100+4)^2

\sf{=100^2+2\times4\times100+4^2

\sf{=10000+800+16

\sf{=10816}

The number 91 can be shown as 90+1.

Then the square(91²) can be shown as (90+1)²

\sf{(90+1)^2}

\sf{=90^2+2\times90\times1+1^2}

\sf{=81000+180+1}

\sf{=81181}

So the square of 104 & 91 is 10816 & 81181 respectively.

More information:

The main idea is the algebraic identity. Here we used the identity \sf{(a+b)^2=a^2+2ab+b^2}, which we can substitute any numbers to satisfy the equality.

Identities are equalities true always. You can prove identities with algebra. For example, here we have \sf{(a+b)^2=a^2+2ab+b^2}.

\sf{(a+b)^2}

\sf{=(a+b)(a+b)}

\sf{=a(a+b)+b(a+b)}

\sf{=a^2+ab+ab+b^2}

\sf{=a^2+2ab+b^2} Hence proven.

Answered by Anonymous
116

♣ Qᴜᴇꜱᴛɪᴏɴ 1:

  • Find The Square of 104

★═════════════════★

♣ ꜰᴏʀᴍᴜʟᴀ ᴜꜱᴇᴅ :

  • (a + b)² = a² + b² + 2ab

★═════════════════★

♣ ᴀɴꜱᴡᴇʀ :

104 can be written as 100 + 4

(104)² = (100 + 4)²

(104)² = 100² + 4² + 2 × 100 × 4   [Using (a + b)² = a² + b² + 2ab)]

(104)² = 10000 + 16 + 800

(104)² = 10816

★══════════════════════════════════ ★

★══════════════════════════════════ ★

♣ Qᴜᴇꜱᴛɪᴏɴ 2:

  • Find The Square of 91 without actual multiplication

★═════════════════★

♣ ꜰᴏʀᴍᴜʟᴀ ᴜꜱᴇᴅ :

  • (a + b)² = a² + b² + 2ab

★═════════════════★

♣ ᴀɴꜱᴡᴇʀ :

91 can be written as 90 + 1

(91)² = (90 + 1)²

(91)² = 90² + 1² + 2 × 90 × 1   [Using (a + b)² = a² + b² + 2ab)]

(91²) = 8100 + 1 + 180

(91)² = 8281

Similar questions