Math, asked by alibabafayez, 3 months ago



please do it I will inbox you if you do it I have another account​

Attachments:

Answers

Answered by BlackRainbow
32

Solution

Here the concept of exponent and powers is used. when bases are same and they are multiplied then their powers get added.

Rule used -

  \bull \:  \bold \purple{{a}^{x}   \times  {a}^{y}  =  {ab}^{(x + y)} }

Let's solve it !!

 \sf{ \implies \frac{5}{3} ^{(4)}  \times  \frac{5}{3} ^{(5)}  =  \frac{ {5} }{3} ^{(3x)}}  \\  \\  \bull  \:{ \underline\bold \pink{powers \: get \: added}} \\  \\  \sf{ \implies  \frac{5}{3} ^{(4 + 5)}  =\frac{ {5} }{3} ^{(3x)} } \\  \\  \bull \:  \bold{ \underline \pink{ compare \: the \: powers}} \\  \\  \sf{ \implies 4 + 5 = 3x} \\  \\  \sf{ \implies \:x =  \frac{9}{3}  } \\  \\  \sf{ \implies \color{green} x = 3}

---------------------------------------------------

More Rules !!

refer to the attachment with the answer.

---------------------------------------------------

Attachments:
Answered by itsolivia
2

Answer:

Solution

Here the concept of exponent and powers is used. when bases are same and they are multiplied then their powers get added.

Rule used -

\bull \: \bold \purple{{a}^{x} \times {a}^{y} = {ab}^{(x + y)} }∙a

x

×a

y

=ab

(x+y)

Let's solve it !!

\begin{gathered} \sf{ \implies \frac{5}{3} ^{(4)} \times \frac{5}{3} ^{(5)} = \frac{ {5} }{3} ^{(3x)}} \\ \\ \bull \:{ \underline\bold \pink{powers \: get \: added}} \\ \\ \sf{ \implies \frac{5}{3} ^{(4 + 5)} =\frac{ {5} }{3} ^{(3x)} } \\ \\ \bull \: \bold{ \underline \pink{ compare \: the \: powers}} \\ \\ \sf{ \implies 4 + 5 = 3x} \\ \\ \sf{ \implies \:x = \frac{9}{3} } \\ \\ \sf{ \implies \color{green} x = 3}\end{gathered}

3

5

(4)

×

3

5

(5)

=

3

5

(3x)

powersgetadded

3

5

(4+5)

=

3

5

(3x)

comparethepowers

⟹4+5=3x

⟹x=

3

9

⟹x=3

Step-by-step explanation:

pls mark brainlist

Similar questions