Math, asked by heleena51, 2 months ago

PLEASE DO IT IN NOTEBOOK​

Attachments:

Answers

Answered by anugulamahalaxmi
2

Hope it helps you...

Please mark me as BRAINLIST....

Attachments:
Answered by MagicalBeast
6

Given :

\sf \bullet \:  x  \: =  \: a\cos(\theta)  \: + \:  b\sin(\theta)

\sf \bullet \:  y  \: =  \: a\sin(\theta)  \:  - \:  b\cos(\theta)

To prove :

x² + y² = a² + b²

Solution :

We have ,

  • LHS = x² + y²
  • RHS = a² + b²

Now what we have to do is prove LHS = RHS

Therefore firstly solving LHS

\sf \implies \: LHS \: = \:  x^2 \: + \:  {y}^{2}

Putting value of x and y

\sf \implies \: LHS \:  =  \: \bigg( a\cos(\theta)  \: + \:  b\sin(\theta) \bigg)^2 + \bigg( a\sin(\theta)  \:  - \:  b\cos(\theta) \bigg)^2

\sf \implies \: LHS \:  =  \: \bigg( a^2\cos^2(\theta)  \: + \:  b^2\sin^2(\theta) + 2[a\cos(\theta)][b\sin(\theta)] \bigg) + \bigg( a^2\sin^2(\theta)  \: + \:  b^2\cos^2(\theta) - 2[a\sin(\theta)][b\cos(\theta)] \bigg)

\sf \implies \: LHS \:  =  \:  a^2\cos^2(\theta) \: + a^2\sin^2(\theta) \: + \:  b^2\sin^2(\theta) \: + \:  b^2\cos^2(\theta) \:+\:  2[a\cos(\theta)][b\sin(\theta)]  </p><p>   \:  - 2[a\sin(\theta)][b\cos(\theta)]

\sf \implies \: LHS \:  =  \:  a^2[\cos^2(\theta) \: + \sin^2(\theta)] \: + \:  b^2[\sin^2(\theta) \: + \:  \cos^2(\theta)] \:+\:  2ab\cos(\theta)\sin(\theta) </p><p>   \:  - 2ab\sin(\theta)\cos(\theta)]

\sf \implies \: LHS \:  =  \:  a^2 \: + \:  b^2 \:

\sf \implies \: LHS \:  = RHS

Hence proved

Similar questions