PLEASE DO IT IN NOTEBOOK
Answers
Solution
To Prove:-
- (1 + tan² θ)( 1 + sin θ)( 1 - sin θ) = 1.
Prove:-
Take L.H.S.
= (1 + tan² θ)( 1 + sin θ)( 1 - sin θ)
Some of Important Formula
So,Now
= (1 + tan² θ)( 1² - sin² θ)
= ( 1 + tan² θ) ( 1 - sin² θ)
Keep,
- ( 1 - sin² θ) = cos² θ.
= (1 + tan² θ)(cos² θ)
Now, keep
- tan θ = sin θ/cos θ.
So, Now
= (1 + sin² θ/cos² θ) × (cos² θ)
= [( cos² θ + sin² θ)/cos² θ] × cos² θ
We Know,
- cos² θ + sin² θ = 1.
= (1/cos² θ ) × cos²θ
= 1
R.H.S.
That's proved.
____________________
Solution
To Prove:-
(1 + tan² θ)( 1 + sin θ)( 1 - sin θ) = 1.
Prove:-
Take L.H.S.
= (1 + tan² θ)( 1 + sin θ)( 1 - sin θ)
Some of Important Formula
\boxed{\tt{\:\tan\theta\:=\:\dfrac{\sin\theta}{\cos\theta}}}
tanθ=
cosθ
sinθ
\boxed{\tt{\:(1-\sin^2\theta)\:=\:\cos^2\theta}}
(1−sin
2
θ)=cos
2
θ
So,Now
= (1 + tan² θ)( 1² - sin² θ)
= ( 1 + tan² θ) ( 1 - sin² θ)
Keep,
( 1 - sin² θ) = cos² θ.
= (1 + tan² θ)(cos² θ)
Now, keep
tan θ = sin θ/cos θ.
So, Now
= (1 + sin² θ/cos² θ) × (cos² θ)
= [( cos² θ + sin² θ)/cos² θ] × cos² θ
We Know,
cos² θ + sin² θ = 1.
= (1/cos² θ ) × cos²θ
= 1
R.H.S.
That's proved.