Math, asked by surendranamo, 10 months ago

please do it quickly ​

Attachments:

Answers

Answered by DrNykterstein
1

 =  >   \:  \: \frac{3 + 2 \sqrt{2} }{3 - 2 \sqrt{2} }  \\  \\   =  > \:  \:  \frac{3 + 2 \sqrt{2} }{3 - 2 \sqrt{2} }  \times  \frac{3 + 2 \sqrt{2} }{ 3 + 2 \sqrt{2} }  \\  \\  =  >  \:  \:   \frac{ ( 3 + 2\sqrt{2})^{2} }{ {3}^{2}  -  {(2 \sqrt{2}) }^{2} }  \\  \\  =  >  \:  \:  \frac{{(3)}^{2}  +  {(2 \sqrt{2}) }^{2} + 2 \times 2 \sqrt{2}  \times 3}{  9 - 8 }  \\  \\  =  >  \:  \:  \frac{9 + 8 + 12\sqrt{2} }{1}  \\  \\  =  >  \:  \:  17 + 12\sqrt{2}

Answered by girisht232
0

Answer:

 \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} } \\  =  \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} }   \times  \frac{3  +  \sqrt{2} }{3 +  \sqrt{2} }  \\  =  \frac{ {(3 +  \sqrt{2)} }^{2} }{ {(3 -  \sqrt{2)} }(3 +  \sqrt{2)} }  \\  =  \frac{9 + 2 + 2 \times 3 \times  \sqrt{2} }{9 - 2}  \\  =  \frac{11 + 6 \sqrt{2} }{7}

Similar questions