Math, asked by mintymilkshakessuck, 1 month ago

please do not spam or answer nonsense. if answer is correct i will give brainliest

Attachments:

Answers

Answered by pari9054
22

given \: a + b + c \:  \: and \:  \frac{1}{a + b}  +  \frac{1}{b + c} \:  \  =  \frac{10}{3}

Multiply both sides (a+b+c)

 = >   \frac{a + b + c}{b + c}  +  \frac{a + b + c}{c + a}  +  \frac{a + b + c}{a + b}  =  \frac{10}{7} (a + b + c)

 =  > 1 +  \frac{a}{b + c}  + 1 +  \frac{b}{c + a}  +  \frac{c}{a + b}  =  \frac{10 \times 3}{7}

 =  > 3 +  \frac{a}{b + c}  +  \frac{b}{c + a}  +  \frac{a}{a + b}  =  \frac{3}{7}

 =  >  \frac{a}{b + c}  + \frac{b}{c + a}  +  \frac{c}{a + b}  =  \frac{30 - 3}{7}  =   \frac{9}{7}

Hence the value of given expression is 9\7.

I hope my answer will help u..

═════════════•❁❀❁•═════════

ꋬꋊꋬꌦꇙꋬ ꃳꋬꋊꏂꋪ꒻ꏂꏂ..

Similar questions