Math, asked by Anonymous, 6 months ago

please do
quickly i will thank ur all answers​

Attachments:

Answers

Answered by anshikaverma29
4

\text{Let f(x) = $\frac{secx-1}{secx+1}$}\\\\\\\text{Let u = secx - 1 and v = secx + 1 }\\\\\\\text{$\therefore$f(x) = $\frac{u}{v} $}\\\\\\\text{So, f'(x) = $(\frac{u}{v})' $}\\\\\\\text{Using quotient rule :}\\\\\\\text{f'(x) = $\frac{u'v - v'u}{v^2} $}\\\\\\\text{Finding u' and v' : }\\\\\\\text{u = secx - 1 }\\\\\\ \text{u' = (secx - 1)'}\\\\\\ \text{= secx tanx - 0}\\\\\\ \text{=secx tanx}\\\\\\\text{and , v =  secx + 1 }\\\\\\ \text{v' = secx tanx + 0 }\\\\\\ \text{= secx tanx}\\\\\\

\text{Now, f'(x) =$ (\frac{u}{v})'$ }\\\\\\ \text{= $\frac{u'v - v'u}{v^2} $}\\\\\\\text{$=\frac{(secx tanx)(secx+1)-(secx tanx)(secx-1)}{(secx+1)^2} $}\\\\\\= \frac{secx.tanx[(secx+1)-(secx-1)]}{(secx+1)^2} \\\\\\= \frac{secx.tanx(secx+1-secx+1)}{(secx+1)^2} \\\\\\= \frac{secx.tanx(2)}{(secx+1)^2}\\\\\\  =\boxed{ \frac{2secx.tanx}{(secx+1)^2}}

Answered by suryakappala00765
0

Answer:

May now you can ans all your questions asked

Before and after

Step-by-step explanation:

Hope this helps you

Attachments:
Similar questions